
A direct search algorithm for solving the multi-
period single-sourcing problem

Miduk Tampubolon,Vita Damayant i ,Herman Mawengkang

Abstract
Generally, problems in logistics faced by a supplier would be the production
timing, the location of inventories, and the assignment of customers to
warehouses. This paper will consider a dynamic multi-period single-sourcing
problem (MPSSP) used to support the corresponding decisions. We propose
a direct search algorithm for solving the multi-period single-sourcing
problems. In partiular, we generalize the strategy of releasing nonbasic
variables from their bounds, combined with the active constraint method that
was developed for the Generalized Assignment Problem (GAP) to a class of
convex assignment problems. We then identify an important subclass of
problems, containing many variants of the multi-period single-sourcing
problem (MPSSP), as well as variants of the GAP.
Key words : Logistics, multi period single sourcing, Integer programming

1. Introduction
Some of the most important problems in logistics faced by a supplier are the timing of
production, the location of inventories, and the assignment of customers to warehouses. In
this paper we will study a multi-period single-sourcing problem (MPSSP) that can be used
to support the corresponding decisions. The model we propose is dynamic in nature, in
contrast to many of the quantitative models proposed in the literature which assume a static
environment. The fact that our model is dynamic enables us to handle a dynamic demand
pattern of the customers, as well as to support inventory decisions explicitly. Related
literature, focusing on static models, can be found in Geoffrion and Graves [10], Benders et
al. [2], and Fleischmann [9]. Duran [7] studies a dynamic model for the planning of
production, bottling, and distribution of beer, but focuses on the production, instead of the
distribution, process. Chan, Muriel and Simchi-Levi [4] study a dynamic, but
uncapacitated, distribution problem.

The logistics network we are considering consists of a set of facilities (each of
which could be interpreted as a plant with an associated warehouse), and a set of customers.
The decisions that need to be made concern (i) the assignment of customers to facilities,
and (ii) the location and size of inventories. These two types of decisions can be handled in
a nested fashion, where we essentially decide on the assignment of customers to facilities
only, and where the location and size of inventories are determined optimally as a function

of the customer assignments. Viewed in this way, the multi-period single-sourcing problem
is a generalized assignment problem with a convex objective function and possibly
additional constraints, representing, for example, throughput or physical inventory
capacities, or perishability constraints. To be able to deal with many variants of the multi-
period single-sourcing problem using a single solution approach, we will introduce a
general class of convex assignment problems, having the property that the objective
function and feasible region are convex, and are both separable in the facilities. The class of
convex assignment problems clearly contains the well-known Generalized Assignment
Problem (GAP), and thus convex assignment problems are ΝΠ-Hard as well. We will
discuss one of the variants of the multi-period single-sourcing problem in detail in this
paper. In this variant each plant has known, finite, and possibly time-varying, capacity,
each customer needs to be served by (assigned to) a unique facility throughout the planning
horizon, and the customer demands exhibit a seasonal pattern.

The outline of the paper is as follows. In Section 2 we will introduce a class of
convex assignment problems, CAP, and propose a direct search approach for solving these
problems based on the strategy of releasing nonbasic variables from their bounds,
combined with the active constraint method. The direct search approach will be given in
Section 3. In Section 4 we formulate the variant of the multi-period single-sourcing
problem mentioned above. In Section 5 we end the paper with some concluding remarks.

2. Convex assignment problems

Consider the following convex assignment problem:

1
minimize ()

m

i ii
g x

=
Σ

subject to (CAP)

1
1

m

iji
x

=
Σ = j = 1, …, n

xij ∈ {0, 1} i = 1, …, m; j = 1, …, n
xi⋅ ∈ Xi i = 1, …, m

where the functions gi are convex, as are the sets Xi denoting any additional constraints.
Ferland, Hertz and Lavoie [8] introduce an even more general class of assignment
problems, and show the applicability of object-oriented programming by developing
software containing several heuristics. As mentioned in the introduction, the GAP is an
example of a convex assignment problem, where the cost function gi and the additional
constraints de_ned by the set Xi associated with agent i are linear in xi⋅. Variants of the
MPSSP are examples of convex assignment problems as well, one of which will be
discussed in detail in Section 4. In a more general context, all set partitioning models
discussed by Barnhart et al. [1] with convex and separable objective function in the index i
are examples of convex assignment problems. The CAP can be formulated as a set
partitioning problem, in a similar way as was done for the GAP by Cattryse, Salomon, and
Van Wassenhove [3]; and Savelsbergh [22]. In particular, a feasible solution for (CAP) can

be seen as a partition of the set of objects {1, …, n} into m subsets. Each element of the
partition is associated with one of the m agents.

Now let Li be the number of subsets of objects that can feasibly be assigned to agent
i (i = 1, …, m). Let iα ⋅

l denote the l-th subset (for fixed i), i.e., 1ijα =l if object j is an
element of subset l for agent i, and 0ijα =l otherwise. We will call iα ⋅

l the l-th column for
agent i. Then, the set partitioning problem can be formulated as follows:

1 1
minimize ()

iLm

i ii
gi yα ⋅= =

Σ Σ l l

l

subject to (MP)

1 1
1

iLm

ij ii
yα

= =
Σ Σ =l l

l
j = 1, ..., n (1)

1
1

iL

iy
=

Σ =l

l
i = 1, ..., m (2)

{0,1}iy ∈l l = 1, …, Li; i = 1, …, m
where iy l is equal to 1 if column l is chosen for agent i, and 0 otherwise. As mentioned by
Barnhart et al. [1], the convexity constraint (2) for agent i (i = 1, …, m) can be written as

1
1

iL

iy
=

Σ ≤l

l

if αij = 0 for each j = 1, …, n is a feasible column for agent i with associated costs
gi(αi⋅) = 0. One of the advantages of (MP) is that its linear relaxation LP(MP) gives a bound
on the optimal solution value of (MP) that is at least as tight (and usually tighter) as the one
obtained by relaxing the integrality constraints in (CAP), R(CAP). Hence, if we let
v(R(CAP)) and v(LP(MP)) denote the optimal objective values of R(CAP) and LP(MP),
respectively, then the following holds.
Proposition 2.1 The following inequality holds:

v(R(CAP)) ≤ v(LP(MP)).

Proof : First of all, note that if LP(MP) is infeasible, the inequality follows directly since in
that case v(LP(MP)) = ∞. In the more interesting case that LP(MP) is feasible, the desired
inequality follows from the convexity of the objective function and the feasible region of
(CAP). We may observe that both relaxations can be obtained by relaxing the integrality
constraints to nonnegativity constraints. Each feasible solution to LP(MP) can be
transformed to a feasible solution to R(CAP) as follows:

1

iL

ij ij ix yα
=

= Σ l l

l
 i = 1, …, m; j = 1, …, n.

For each i = 1, …, m, vector xi⋅ is a convex combination of vectors iα l for l = 1, …, Li.
Since all constraints in (CAP) are convex x is a feasible solution for (CAP). Moreover, by
convexity of the functions gi we have that

1 1 1 1 1
() () .

i iL Lm m m

i i i i i i i ii i i
g x g y g yα α⋅ ⋅= = = = =

 Σ = Σ Σ ≤ Σ Σ  
l l l l

l l

Thus, the desired inequality follows. □

This result suggests that the formulation (MP) is more promising than (CAP) when solving
the convex assignment problem.

2.1 Solving the convex assignment problem
The convex assignment problem is a (non-linear) Integer Programming Problem which can
be solved to optimality by using, for example, a Branch and Bound algorithm. One of the
factors determining the performance of this algorithm is the quality of the lower bounds
used to fathom nodes. Proposition 2.1 shows that the lower bound given by relaxing the
integrality constraints in (MP) is at least as good as the one obtained by relaxing the
integrality constraints in (CAP). Thus, the set partitioning formulation for the convex
assignment problem looks more attractive when choosing a Branch and Bound scheme.
There are other reasons to opt for this formulation like the possibility of adding constraints
that are difficult to express analytically.

A standard Branch and Bound scheme would require all the columns to be
available, but (in the worst case) the number of columns (and thus the number of variables)
of (MP) can be exponential in the size of the problem. This makes a standard Branch and
Bound scheme quite unattractive for (MP).

3. The Basic Approach for Direct search

Consider a MILP problem with the following form

 Minimize P = cT x (5)

 Subject to Ax ≤ b (6)

 x ≥ 0 (7)

 xj integer for some j ∈ J (8)

A component of the optimal basic feasible vector (xB)k, to MILP solved as continuous can

be written as

1 1() () () ()B k k k N kj N j kn Nx x x m x n mβ α α α= − − − − − − −L L (9)

Note that, this expression can be found in the final tableau of Simplex procedure. If (xB)k is

an integer variable and we assume that βk is not an integer, the partitioning of βk into the

integer and fractional components is that given

βk = [βk] + fk, 0 ≤ fk ≤ 1 (10)

suppose we wish to increase (xB)k to its nearest integer, ([β]+1). Based on the idea of

suboptimal solutions we may elevate a particular nonbasic variable, say (xN)j*, above its

bound of zero, provided αkj*, as one of the element of the vector αj*, is negative. Let ∆ j* be

amount of movement of the non variable (xN)j*, such that the numerical value of scalar (xB)k

is integer. Referring to Eqn.(9), ∆ j* can then be expressed as

*

*

1 k
f

kj

f
α
−

∆ =
− (11)

while the remaining nonbasic stay at zero. It can be seen that after substituting (10) into

(11) for (xN)j* and taking into account the partitioning of βk given in (10), we obtain

(xB)k = [β] + 1

Thus, (xB)k is now an integer.

It is now clear that a nonbasic variable plays an important role to integerize the

corresponding basic variable. Therefore, the following result is necessary in order to

confirm that must be a non-integer variable to work with in integerizing process.

Theorem 1. Suppose the MILP problem (5)-(8) has an optimal solution, then some of the

nonbasic variables. (xN)j, j =1, … , n, must be non-integer variables.

Proof.

Solving problem as a continuous of slack variables (which are non-integer, except in the

case of equality constraint). If we assume that the vector of basic variables xB consists of all

the slack variables then all integer variables would be in the nonbasic vector xN and

therefore integer valued.

3.1 Derivation of the method

It is clear that the other components, (xB)i≠k, of vector xB will also be affected as the

numerical value of the scalar (xN)j* increases to ∆j*. Consequently, if some element of vector

αj*, i.e., αj* for i ≠ k, are positive, then the corresponding element of xB will decrease, and

eventually may pass through zero. However, any component of vector x must not go below

zero due to the non-negativity restriction. Therefore, a formula, called the minimum ratio

test is needed in order to see what is the maximum movement of the nonbasic (xN)j* such

that all components of x remain feasible. This ratio test would include two cases.

1. A basic variable, (xB)i≠k decreases to zero (lower bound) first.

2. The basic variable, (xB)k increases to an integer.

Specifically, corresponding to each of these two cases above, one would compute

*
1 | 0 *

min
j

i
i k jα

β
θ

α≠ >

  =  
  

 (12)

θ2 = ∆j* (13)

How far one can release the nonbasic (xN)j* from its bound of zero, such that vector x

remains feasible, will depend on the ratio test θ* given below

θ* = min(θ1, θ2) (14)

obviously, if θ* = θ1, one of the basic variable (xB)i≠k will hit the lower bound before (xB)k

becomes integer. If θ* = θ2, the numerical value of the basic variable (xB)k will be integer

and feasibility is still maintained. Analogously, we would be able to reduce the numerical

value of the basic variable (xB)k to its closest integer [βk]. In this case the amount of

movement of a particular nonbasic variable, (xN)j*, corresponding to any positive element of

vector αj’, is given by

k
f

kj

f
α′∆ = (15)

In order to maintain the feasibility, the ratio test θ* is still needed. Consider the movement

of a particular nonbasic variable, ∆, as expressed in Eqns.(11) and (15). The only factor that

one needs to calculate is the corresponding element of vectorα. A vector αj can be

expressed as

αj = B-1aj, j = 1, …, n – m (16)

Therefore, in order to get a particular element of vector αj we should be able to distinguish

the corresponding column of matrix [B]-1. Suppose we need the value of element αkj*,

letting T
kv be the k-th column vector of [B]-1, we then have

1T T
k kv e B−= (17)

subsequently, the numerical value of αkj* can be obtained from

* *
T

kj k jv aα = (18)

in Linear Programming (LP) terminology the operation conducted in Eqns. (17) and (18) is

called the pricing operation. The vector of reduced costs dj ca is used to measure the

deterioration of the objective function value caused by releasing a nonbasic variable from

its bound. Consequently, in deciding which nonbasic should be released in the integerizing

process, the vector dj must be taken into account, such that deterioration is minimized.

Recall that the minimum continuous solution provides a lower bound to any integer-

feasible solution. Nevertheless, the amount of movement of particular nonbasic variable as

given in Eqns. (11) or (15), depends in some way on the corresponding element of vector

αj. Therefore it can be observed that the deterioration of the objective function value due to

releasing a nonbasic variable (xN)j* so as to integerize a basic variable (xB)k may be

measured by the ration

*

k

kj

d
α (19)

where |a| means the absolute value of scalar a.

In order to minimize the deteoration of the optimal continuous solution we then use the

following strategy for deciding which nonbasic variable may be increased from its bound of

zero, that is,

*
min , 1, ,k

j kj

d
j n m

α

   = − 
  

K (20)

From the “active constraint” strategy and the partitioning of the constraints corresponding

to basic (B), superbasic (S) and nonbasic (N) variables we can write

b

N
N

S

x
bB S N

x
bI

x

 
     =          

 (21)

or

b S NBx Sx Nx b+ + = (22)

N Nx b= (23)

The basis matrix B is assumed to be square and nonsingular, we get

B S Nx Wx xβ α= − − (24)

where
1B bβ −= (25)
1W B S−= (26)

1B Nα −= (27)

Expression (23) indicates that the nonbasic variables are being held equal to their bound. It

is evident through the “nearly” basic expression of Eqn. (24), the integerizing strategy

discussed in the previous section, designed for MILP problem can be implemented.

Particularly, we would be able to release a nonbasic variable from its bound, Eqn (23) and

exchange it with a corresponding basic variable in the integerizing process, although the

solution would be degenerate. Furthermore, the Theorem (1) above can also be extended

for MINLP problem.

Theorem 2. Suppose the MINLP problem has a bounded optimal continuous solution, then

we can always get a non-integer yj in the optimum basic variable vector.

Proof

1. If these variables are nonbasic, the they will be at their bound. Therefore they have

integer value.

2. If a yj is superbasic, it is possible to make yj basic and bring in a nonbasic at its

bound to replace it in the superbasic.

However, the ratio test expressed in (14) connot be used as a tool to guarantee that the

integer solution optimal found gill remains in the feasible region. Instead, we use the

feasibility test from Minos in order to check whether the integer solution is feasible or

infeasible.

3.2 Pivoting

Currently, we are in a position where particular basic variable, (xB)k is being integerized,

thereby a corresponding nonbasic variable, (cN)j*, is being released from its bound of zero.

Suppose the maximum movement of (xN)j* satisfies

θ* = ∆j*

such that (xB)k is integer valued to exploit the manner of changing the basis in linear

programming, we would be able to move (xN)j* into B (to replace (xB)k) and integer-valued

(xB)k into S in order to maintain the integer solution. We now have a degenerate solution

since a basic variable is at its bound. The integerixing process continues with a new set [B,

S]. In this case, eventually we may end up with all of the integer variables being superbasic.

Theorem 3. A suboptimal solution exists to the MILP and MINLP problem in which all of

the integer variables are superbasic.

Proof

1. If all of the integer variables are in N, then they will be a bound.

2. If an integer variable is basic it is possible to either

• interchange it with a superbasic continuous variable, or

• make this integer variable superbasic and bring in a nonbasic at its bound to

replace it in the basis which gives a degenerate solution.

The other case which can happen is that a different basic variabels (xB)i≠k may hit its bound

before (xB)k becomes integer. Or in other words, we are in a situation where
*

1θ = ∆

In this case we move the basic variable (xB)i into N and its position in the basic variable

vector would be replaced by nonbasic (xN)j*. note (xB)k is still a non-integer basic variable

with a new value.

4. The Multi-Period Single-Sourcing Problem

In this section we will introduce the notation of the MPSSP and we will show that it is a
member of the class of convex assignment problems presented in Section 2. Let n denote
the number of customers, m the number of facilities, and T the planning horizon. The total
demand of customer j throughout the planning horizon is given by dj. The demand patterns
over time of the customers are assumed to exhibit a common seasonality, represented by
nonnegative seasonal factors tσ for each t = 1, …, T, satisfying 1 1T

t tσ=Σ = . Thus, the
demand of customer j in period t is equal to t jdσ . Let bit denote the production capacity at
facility i in period t. The costs of supplying customer j by facility i in period t are equal to
cijt. The unit inventory holding costs at facility i in period t are given by hit. (All parameters
are nonnegative by definition.) For convenience, we assume that each warehouse has
essentially unlimited physical and throughput capacity. In other words, we assume that its
physical capacity is sufficient to be able to store the cumulative excess production of its
corresponding plant, even if this plant produces to full capacity in each period. In addition,
the throughput capacity is large enough for the warehouse to be able to supply any
combination of customers assigned to it. However, these two types of capacity constraints
can be easily added at little expense to the algorithm.

The MPSSP can be formulated as follows:
minimize

1 1 1 1 1
minimize

T m n T m

ijt ij it itt i j t i
c x h I

= = = = =
Σ Σ Σ + Σ Σ

subject to (P0)

, 11

n

t j ij it it i tj
d x I b Iσ −=

⋅ Σ + ≤ + i = 1, …, m; t = 1, …, T (3)

1
1

m

iji
x

=
Σ = j = 1, …, n

xij ∈ {0, 1} i = 1, …, m; j = 1, …, n
Ii0 = 0 i = 1, …, m
Iit ≥ 0 i = 1, …, m; t = 1, …, T

where xij is equal to 1 if customer j is assigned to facility i and zero otherwise, and Iit

represents the amount of product in storage at facility i at the end of period t. Hereafter
mnx ∈ ¡ will denote the vector with components xij and similarly for mTI ∈ ¡ .

Romeijn and Romero Morales [21] have shown for a variant of the MPSSP that the
inventory variables can be eliminated, at the expense of introducing convexity in the
objective function, i.e., an equivalent formulation with a convex objective function exists.
In our case, this reformulation of the MPSSP yields a Single-Sourcing Problem (hereafter
SSP) with convex objective function.

Proposition 4.1 (P0) can be equivalently reformulated as:

1 1 1 1 1
minimize

m n T m n

ijt ij i j iji j t i j
c x H d x

= = = = =

   Σ Σ Σ + Σ Σ      
subject to (P)

1

1 1,...,
1

min
tn

i
j ij tj t T

bd x τ τ

τ τσ
=

= =
=

 ΣΣ ≤  Σ 
i = 1, …, m

1
1

m

iji
x

=
Σ = j = 1, …, n

xij ∈ {0, 1} i = 1, …, m; j = 1, …, n

where Hi(u) is the convex function given by the optimal value of the following problem

1
minimize

T

it t
t

h I
=

Σ
subject to

It – It – 1 ≤ bit - σtu t = 1, …, T
I0 = 0
It ≥ 0 t = 1, …, T.

Proof: Let F be the feasible region of (P0). By decomposing (P0), we obtain the following
equality

(,) 1 1 1 1 1

: (, 1 1 1 (,) 1 1

: (, 1 1 1

min

min min

min ()

T m n T m

ijt ij it itx I F t i j t i

m n T T m

ijt ij it itx I x I F i j t x I F t i

m n T

ijt ijx I x I F i j t

c x h I

c x h I

c x H x

∈ = = = = =

∃ ′ ′)∈ = = = ∈ = =

∃ ′ ′)∈ = = =

 Σ Σ Σ + Σ Σ =  
  = Σ Σ Σ + Σ Σ    
  = Σ Σ Σ +    

where H(x) is equal to

1 1
minimize

m T

it iti t
h I

= =
Σ Σ

subject to

Iit – Ii,t – 1 ≤ bit – σt ·
1

n

j ijj
d x

=
Σ i = 1, ..., m; t = 1, ..., T

Ii0 = 0 i = 1, ..., m
Iit ≥ 0 i = 1, ..., m; t = 1, ..., T

This problem is separable in i, and moreover for each i = 1, …, m it only depends on

1
n
j j ijd x=Σ . Thus, ()1 1() m n

i i j j ijH x H d x= == Σ Σ . Now we will show that the feasible
region of the decomposed problem is equal to the feasible region of (P). Consider some x
so that there exists a feasible solution (x, I) for (P0). For each facility i, we aggregate the
capacity constraints over all the periods. Then, we obtain

, 11 1 1

, 11 1 1 1 1

01 1 1

()
T n T

t j ij it it i tt j t

T n T T T

t j ij it it i tt j t t t

T n T

t j ij iT it it j t

d x I b I

d x I b I

d x I b I

σ

σ

σ

−= = =

−= = = = =

= = =

 Σ ⋅ Σ + ≤ Σ +  
 Σ ⋅ Σ + Σ ≤ Σ + Σ  

 Σ ⋅ Σ + ≤ Σ +  
which is equivalent to

1 1 1

T n T

t j ij iT itt j t
d x I bσ

= = =

 Σ ⋅ Σ + ≤ Σ  
and this implies

1 1 1

T n T

t j ij itt j t
d x bσ

= = =

 Σ ⋅ Σ ≤ Σ  
The previous inequality shows that x is feasible for (P). Now, consider a feasible solution x
to (P). Then, we know there exists a vector y ∈ RmT so that

yit ≤ bit i = 1, ..., m; t = 1, ..., T
and

1 1 1
1, ...,

T T n

it t j ijt t j
y d x i mσ

= = =
Σ = Σ Σ =

(Note that y can be interpreted as a set of feasible production levels corresponding to (x, I)
in the original three-level formulation of (P0).) Now, define Iit as

1 1 1

T T n

it i t j ijt t j
I y d xτ σ

= = =

 = Σ − Σ ⋅ Σ  
for each i = 1, …, m and t = 1, …, T. It is easy to see that Iit is nonnegative, and (x, I) ∈ F.
 This means that x is a feasible solution for the decomposed problem. With respect to
function Hi(u) it is easy to see that has a finite value and thus by strong LP-duality we
obtain

{ }
{ }

1 01

1

() min : , 0, 1, ,

max () :

T

i it t t t it tt

T

t it t it

H u h I I I b u I t T

u b w w W

σ

σ

−=

=

= Σ − ≤ − ≥ =

= Σ − ∈

L

where
1{ : , 1,..., 1; 0, 1,..., }T

i t t it tW w w w h t T w t T+= ∈ − + ≥ = − ≥ =¡
Now let [0,1]µ ∈ and fix u; ú ∈ ¡ . Then

1

1 1

1

1

max (((1))) :

max () (1) () :

max () :

(1) max () :

T

t it t i
t

T T

t it t t it t i
t t

T

t it t i
t

T

t it t i
t

u ú b w w W

u b w ú b w w W

u b w w W

ú b w w W

µ µ σ

µ σ µ σ

µ σ

µ σ

=

= =

=

=

 + − − ∈ 
 

 = − + − − ∈ 
 

 ≤ − ∈ + 
 

 − − ∈ 
 

Σ

Σ Σ

Σ

Σ
which shows the convexity of Hi(u). □

The function Hi calculates the minimal inventory costs at facility i needed to be able
to supply the customers assigned to it. We may observe that the value of the inventory costs
at each facility only depends on the total demand required by the customers assigned to it.
The previous proposition tells us that the MPSSP belongs to the class of convex assignment
problems introduced in Section 3.1 by choosing

1 1 1
()

n T n

i ijt j i j i
j t j

g z c z H d z
= = =

  = +      
Σ Σ Σ for each nz ∈ ¡

1

1,...,1 1

[0,1] : min
tn

in
i j j tt Tj

b
X z d z ττ

ττ σ
=

== =

    = ∈ ≤     

ΣΣ Σ
We know that function Hi is convex. In fact, it is easy to show that this function is also
piecewise linear. This is illustrated by an example, where we will suppress the index i for
convenience. Consider n = 1, T = 3, and

(1,1,1)Tσ =

(2,2,2)Th =

1 25d =
(50,20,10)Tb =

In that case, we have that H(z1) is equal to the optimal value of
1 2 3minimize 2()I I I+ +

subject to
1 0 150 25I I z− ≤ −

2 1 120 25I I z− ≤ −

3 2 110 25I I z− ≤ −

0 0I =
0tI ≥ t = 1, 2, 3.

Figure 4: The inventory costs

Figure 4 plots the optimal objective function value of its LP-relaxation as a function of the
fraction z1 of the item added to the knapsack. Thus, we observe that it is a piecewise linear
function in the fraction z1 added to the knapsack. Note that each breakpoint corresponds to
a new inventory variable becoming positive. In this particular case, all inventory variables
are equal to zero if the fraction of the demand supplied is below 0.4, i.e., z1 ∈ [0; 0:4]. If z1

∈ (0:4; 0:6], I2 becomes positive. Finally, if z1 ∈ (0:6; 1], I1 also becomes positive.

6. Conclusions
In this paper we have presented a direct search approach that was developed for the
Generalized Assignment Problem (GAP) to a much richer class of problems, which we
have called CAP (Convex Assignment Problems). The viability of this approach depends
critically on the possibility of solving the relaxed problem efficiently. We have identified
an important subclass of problems, containing many variants of the multi-period single-
sourcing problem (MPSSP), as well as some variants of the GAP, for which this is the case.
We have applied the method to a particular variant of the MPSSP.

References
[1] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P. Vance.

Branch-and-price: column generation for solving huge integer programs. Operations
Research, 46(3):316-329, 1998.

[2] J.F. Benders, J.A. Keulemans, J.A.E.E. van Nunen, and G. Stolk. A decision support
program for planning locations and allocations with the aid of linear programming. In
C.B. Tilanus, O.B. de Gaus, and J.K. Lenstra, editors, Quantitative Methods in
Management: cases studies of failures and successes, chapter 4, pages 29-34. John
Wiley & Sons, Chichester, 1986.

[3] D.G. Cattrysse, M. Salomon, and L.N. Van Wassenhove. A set partitioning heuristic
for the generalized assignment problem. European Journal of Operational Research,
72:167{174, 1994.

[4] L.M.A. Chan, A. Muriel, and D. Simchi-Levi. Supply-Chain Management:
Integrating inventory and transportation. Research Report, Department of Industrial
Engeneering and Management Sciences, Northwestern University, Evanston, Illinois,
1998.

[5] Z.-L. Chen and W.B. Powell. Solving parallel machine scheduling problems by
column generation. INFORMS Journal on Computing, 11(1):78-94, 1999.

[6] CPLEX Reference Manual. ILOG CPLEX 6.5. ILOG, Inc., Incline Village, Nevada,
1999.

[7] F. Duran. A large mixed integer production and distribution program. European
Journal of Operational Research, 28:207-217, 1987.

[8] J.A. Ferland, A. Hertz, and A. Lavoie. An object-oriented methodology for solving
assignment-type problems with neighborhood search techniques. Operations
Research, 44(2):347-359, 1996.

[9] B. Fleischmann. Designing distribution systems with transport economies of scale.
European Journal of Operational Research, 70:31- 42, 1993.

[10] A. Geo_rion and G.W. Graves. Multicommodity distribution system design by
Benders decomposition. Management Science, 20(5):822-844, 1974.

[11] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9:849-859, 1961.

[12] N.G. Hall and M.E. Posner. Generating experimental data for scheduling problems.
Technical report, The Ohio State University, 1996.

[13] J.B. Hiriart-Urruty and C. Lemar_echal. Convex analysis and minimization
algorithms: Fundamentals, volume 1. Springer-Verlag, Berlin, 1993.

[14] S. Martello and P. Toth. An algorithm for the generalized assignment problem. In
J.P. Brans, editor, Operational Research, pages 590-603, Amsterdam, 1981. IFORS,
North-Holland.

[15] S. Martello and P. Toth. Knapsack problems, algorithms and computer
implementations. John Wiley & Sons, New York, 1990.

[16] J.B. Mazzola and A.W. Neebe. Resource-constrained assignment scheduling.
Operations Research, 34(4):560-572, 1986.

[17] A.H.G. Rinnooy Kan, L. Stougie, and C. Vercellis. A class of generalized greedy
algorithms for the multi-knapsack problem. Discrete Applied Mathematics, 42:279-
290, 1993.

[18] H.E. Romeijn and N. Piersma. A probabilistic feasibility and value analysis of the
generalized assignment problem. ERASM Management Report Series no. 293,
Rotterdam School of Management, Erasmus University Rotterdam, 1996.

[19] H.E. Romeijn and D. Romero Morales. A class of greedy algorithms for the
generalized assignment problem. ERASM Management Report Series no. 40(13),
Rotterdam School of Management, Erasmus University Rotterdam, 1997.
Forthcoming in Discrete Applied Mathematics.

[20] H.E. Romeijn and D. Romero Morales. Generating experimental data for the
generalized assignment problem. ERASM Management Report Series no. 1998-9,
Rotterdam School of Management, Erasmus University Rotterdam, 1998.

[21] H.E. Romeijn and D. Romero Morales. An asymptotically optimal greedy heuristic
for the multi-period single-sourcing problem: the cyclic case. ERASM Management
Report Series no. 20-1999, Rotterdam School of Management, Erasmus
UniversityRotterdam, 1999.

[22] M.P.W. Savelsbergh. A branch{and{price algorithm for the generalized assignment
problem. Operations Research, 45(6):831-841, 1997.

[23] V. Srinivasan and G.L. Thompson. An algorithm for assigning uses to sources in a
special class of transportation problems. Operations Research, 21:284-295, 1972.

