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Abstract
Generally, problems in logistics faced by a supplier would be the production 
timing,  the  location  of  inventories,  and  the  assignment  of  customers  to 
warehouses. This paper will consider  a dynamic multi-period single-sourcing 
problem (MPSSP) used to support the corresponding decisions. We propose 
a  direct  search  algorithm  for  solving  the  multi-period single-sourcing 
problems.  In  partiular,  we  generalize  the  strategy  of  releasing  nonbasic 
variables from their bounds, combined with the active constraint method that 
was developed for the Generalized Assignment Problem (GAP) to a class of 
convex  assignment  problems.  We then identify  an  important  subclass  of 
problems, containing  many  variants  of  the  multi-period  single-sourcing 
problem (MPSSP), as well as variants of the GAP.
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1. Introduction
Some of the most important problems in logistics faced by a supplier are the timing of 
production, the location of inventories, and the assignment of customers to warehouses. In 
this paper we will study a multi-period single-sourcing problem (MPSSP) that can be used 
to support the corresponding decisions. The model we propose is dynamic in nature, in 
contrast to many of the quantitative models proposed in the literature which assume a static  
environment. The fact that our model is dynamic enables us to handle a dynamic demand 
pattern  of  the  customers,  as  well  as  to  support  inventory  decisions  explicitly.  Related 
literature, focusing on static models, can be found in Geoffrion and Graves [10], Benders et 
al.  [2],  and  Fleischmann  [9].  Duran  [7]  studies  a  dynamic  model  for  the  planning  of 
production, bottling, and distribution of beer, but focuses on the production, instead of the 
distribution,  process.  Chan,  Muriel  and  Simchi-Levi  [4]  study  a  dynamic,  but 
uncapacitated, distribution problem.

The logistics  network we are considering consists  of a set  of  facilities  (each of 
which could be interpreted as a plant with an associated warehouse), and a set of customers. 
The decisions that need to be made concern (i) the assignment of customers to facilities, 
and (ii) the location and size of inventories. These two types of decisions can be handled in 
a nested fashion, where we essentially decide on the assignment of customers to facilities 
only, and where the location and size of inventories are determined optimally as a function 



of the customer assignments. Viewed in this way, the multi-period single-sourcing problem 
is  a  generalized  assignment  problem  with  a  convex  objective  function  and  possibly 
additional  constraints,  representing,  for  example,  throughput  or  physical  inventory 
capacities, or perishability constraints. To be able to deal with many variants of the multi-
period  single-sourcing  problem  using  a  single  solution  approach,  we  will  introduce  a 
general  class  of  convex  assignment  problems,  having  the  property  that  the  objective 
function and feasible region are convex, and are both separable in the facilities. The class of 
convex  assignment  problems  clearly  contains  the  well-known  Generalized  Assignment 
Problem (GAP),  and thus  convex assignment  problems are  ΝΠ-Hard  as  well.  We will 
discuss one of the variants of the multi-period single-sourcing problem in detail  in this 
paper. In this  variant each plant has known, finite,  and possibly time-varying, capacity,  
each customer needs to be served by (assigned to) a unique facility throughout the planning 
horizon, and the customer demands exhibit a seasonal pattern.

The outline of the paper is as follows. In Section 2 we will introduce a class of 
convex assignment problems, CAP, and propose a direct search approach for solving these 
problems  based  on  the  strategy  of  releasing  nonbasic  variables  from  their  bounds,  
combined with the active constraint method. The direct search approach will be given in 
Section  3.  In  Section  4  we  formulate  the  variant  of  the  multi-period  single-sourcing 
problem mentioned above. In Section 5 we end the paper with some concluding remarks.

2. Convex assignment problems

Consider the following convex assignment problem:
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xij  ∈  {0, 1} i = 1, …, m;  j = 1, …, n
xi⋅  ∈  Xi i = 1, …, m

where the functions gi are convex, as are the sets Xi denoting any additional constraints.  
Ferland,  Hertz  and  Lavoie  [8]  introduce  an  even  more  general  class  of  assignment 
problems,  and  show  the  applicability  of  object-oriented  programming  by  developing 
software containing several heuristics. As mentioned in the introduction,  the GAP is an 
example of a convex assignment problem, where the cost function gi and the additional 
constraints de_ned by the set  Xi associated with agent  i are linear in  xi⋅. Variants of the 
MPSSP  are  examples  of  convex  assignment  problems  as  well,  one  of  which  will  be 
discussed  in  detail  in  Section  4.  In  a  more  general  context,  all  set  partitioning  models 
discussed by Barnhart et al. [1] with convex and separable objective function in the index i 
are  examples  of  convex  assignment  problems.  The  CAP  can  be  formulated  as  a  set 
partitioning problem, in a similar way as was done for the GAP by Cattryse, Salomon, and 
Van Wassenhove [3]; and Savelsbergh [22]. In particular, a feasible solution for (CAP) can 



be seen as a partition of the set of objects {1, …, n} into m subsets. Each element of the 
partition is associated with one of the m agents.

Now let Li be the number of subsets of objects that can feasibly be assigned to agent
i (i = 1, …,  m). Let  iα ⋅

l  denote the  l-th subset (for fixed  i), i.e.,  1ijα =l  if object j is an 
element of subset l for agent i, and 0ijα =l  otherwise. We will call iα ⋅

l  the l-th column for 
agent i. Then, the set partitioning problem can be formulated as follows:
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{0,1}iy ∈l l = 1, …, Li;  i = 1, …, m
where iy l  is equal to 1 if column l is chosen for agent i, and 0 otherwise. As mentioned by 
Barnhart et al. [1], the convexity constraint (2) for agent i (i = 1, …, m) can be written as
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if  αij =  0 for  each  j =  1,  …,  n is  a  feasible  column for  agent  i  with  associated  costs 
gi(αi⋅) = 0. One of the advantages of (MP) is that its linear relaxation LP(MP) gives a bound 
on the optimal solution value of (MP) that is at least as tight (and usually tighter) as the one 
obtained  by  relaxing  the  integrality  constraints  in  (CAP),  R(CAP).  Hence,  if  we  let 
v(R(CAP)) and  v(LP(MP)) denote the optimal objective values of  R(CAP) and LP(MP), 
respectively, then the following holds.
Proposition 2.1 The following inequality holds:

v(R(CAP)) ≤ v(LP(MP)).

Proof : First of all, note that if LP(MP) is infeasible, the inequality follows directly since in  
that case v(LP(MP)) = ∞. In the more interesting case that LP(MP) is feasible, the desired 
inequality follows from the convexity of the objective function and the feasible region of 
(CAP). We may observe that both relaxations can be obtained by relaxing the integrality 
constraints  to  nonnegativity  constraints.  Each  feasible  solution  to  LP(MP)  can  be 
transformed to a feasible solution to R(CAP) as follows:
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For each  i = 1, …,  m, vector  xi⋅ is a convex combination of vectors  iα l  for  l = 1, …,  Li. 
Since all constraints in (CAP) are convex x is a feasible solution for (CAP). Moreover, by 
convexity of the functions gi we have that
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Thus, the desired inequality follows. □



This result suggests that the formulation (MP) is more promising than (CAP) when solving 
the convex assignment problem.

2.1 Solving the convex assignment problem
The convex assignment problem is a (non-linear) Integer Programming Problem which can 
be solved to optimality by using, for example, a Branch and Bound algorithm. One of the 
factors determining the performance of this algorithm is the quality of the lower bounds 
used to fathom nodes. Proposition 2.1 shows that the lower bound given by relaxing the 
integrality  constraints  in  (MP)  is  at  least  as  good as  the  one  obtained  by relaxing  the 
integrality  constraints  in  (CAP).  Thus,  the  set  partitioning  formulation  for  the  convex 
assignment  problem looks more attractive when choosing a Branch and Bound scheme. 
There are other reasons to opt for this formulation like the possibility of adding constraints 
that are difficult to express analytically.

A  standard  Branch  and  Bound  scheme  would  require  all  the  columns  to  be 
available, but (in the worst case) the number of columns (and thus the number of variables) 
of (MP) can be exponential in the size of the problem. This makes a standard Branch and 
Bound scheme quite unattractive for (MP).  

3. The Basic Approach for Direct search

Consider a MILP problem with the following form

     Minimize P = cT x  (5)

      Subject to Ax ≤ b   (6)

                                        x ≥ 0 (7)

                xj integer for some j ∈ J (8)

A component of the optimal basic feasible vector (xB)k, to MILP solved as continuous can 

be written as

1 1( ) ( ) ( ) ( )B k k k N kj N j kn Nx x x m x n mβ α α α= − − − − − − −L L              (9)

Note that, this expression can be found in the final tableau of Simplex procedure. If (xB)k is 

an integer variable and we assume that βk is not an integer, the partitioning of βk into the 

integer and fractional components is that given

βk = [βk] + fk, 0 ≤  fk ≤ 1                                  (10)

suppose we wish to  increase  (xB)k to  its  nearest  integer,  ([β]+1).  Based on the  idea  of 

suboptimal solutions we may elevate a particular nonbasic variable, say (xN)j*, above its 

bound of zero, provided αkj*, as one of the element of the vector αj*, is negative. Let ∆ j* be 



amount of movement of the non variable (xN)j*, such that the numerical value of scalar (xB)k 

is integer. Referring to Eqn.(9), ∆ j* can then be expressed as 

*

*
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f
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f
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−

∆ =
−                                              (11)

while the remaining nonbasic stay at zero. It can be seen that after substituting (10) into 

(11) for (xN)j* and taking into account the partitioning of βk given in (10), we obtain

(xB)k = [β] + 1

Thus, (xB)k is now an integer.

It  is  now  clear  that  a  nonbasic  variable  plays  an  important  role  to  integerize  the 

corresponding  basic  variable.  Therefore,  the  following  result  is  necessary  in  order  to 

confirm that must be a non-integer variable to work with in integerizing process.

Theorem 1. Suppose the MILP problem (5)-(8) has an optimal solution, then some of the 

nonbasic variables. (xN)j, j =1, … , n, must be non-integer variables.

Proof. 

Solving problem as a continuous of slack variables (which are non-integer, except in the 

case of equality constraint). If we assume that the vector of basic variables xB consists of all 

the  slack  variables  then  all  integer  variables  would  be  in  the  nonbasic  vector  xN and 

therefore integer valued.

3.1 Derivation of the method

It  is  clear  that  the  other  components,  (xB)i≠k,  of  vector  xB will  also  be  affected  as  the 

numerical value of the scalar (xN)j* increases to ∆j*. Consequently, if some element of vector 

αj*, i.e., αj*  for i ≠ k, are positive, then the corresponding element of xB will decrease, and 

eventually may pass through zero. However, any component of vector x must not go below 

zero due to the non-negativity restriction. Therefore, a formula, called the minimum ratio 

test is needed in order to see what is the maximum movement of the nonbasic (xN)j* such 

that all components of x remain feasible. This ratio test would include two cases.

1. A basic variable, (xB)i≠k decreases to zero (lower bound) first.

2. The basic variable, (xB)k increases to an integer.

Specifically, corresponding to each of these two cases above, one would compute
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                                   (12)

θ2 = ∆j*                                                (13)

How far one can release the nonbasic (xN)j* from its  bound of zero,  such that  vector x 

remains feasible, will depend on the ratio test θ* given below

θ*  = min(θ1, θ2)                                                 (14)

obviously, if θ* = θ1, one of the basic variable (xB)i≠k will hit the lower bound before (xB)k 

becomes integer. If  θ* = θ2, the numerical value of the basic variable (xB)k will be integer 

and feasibility is still maintained. Analogously, we would be able to reduce the numerical 

value  of  the  basic  variable  (xB)k to  its  closest  integer  [βk].  In  this  case  the  amount  of 

movement of a particular nonbasic variable, (xN)j*, corresponding to any positive element of 

vector αj’, is given by

k
f

kj

f
α′∆ =                                                 (15)

In order to maintain the feasibility, the ratio test θ* is still needed. Consider the movement 

of a particular nonbasic variable, ∆, as expressed in Eqns.(11) and (15). The only factor that 

one  needs  to  calculate  is  the  corresponding  element  of  vectorα.  A  vector  αj can  be 

expressed as

αj = B-1aj, j = 1, …, n – m                                     (16)

Therefore, in order to get a particular element of vector αj we should be able to distinguish 

the  corresponding column of  matrix  [B]-1.  Suppose  we need the  value  of  element  αkj*, 

letting T
kv  be the k-th column vector of [B]-1, we then have

1T T
k kv e B−=                                                  (17)

subsequently, the numerical value of αkj* can be obtained from

* *
T

kj k jv aα =                                                  (18)

in Linear Programming (LP) terminology the operation conducted in Eqns. (17)  and (18) is 

called  the  pricing  operation.  The vector  of  reduced  costs  dj ca  is  used  to  measure  the 

deterioration of the objective function value caused by releasing a nonbasic variable from 



its bound. Consequently, in deciding which nonbasic should be released in the integerizing 

process, the vector  dj must  be taken into account,  such that deterioration is minimized. 

Recall  that  the  minimum  continuous  solution  provides  a  lower  bound  to  any  integer-

feasible solution. Nevertheless, the amount of movement of particular nonbasic variable as 

given in Eqns. (11) or (15), depends in some way on the corresponding element of vector 

αj. Therefore it can be observed that the deterioration of the objective function value due to 

releasing  a  nonbasic  variable  (xN)j* so  as  to  integerize  a  basic  variable  (xB)k may  be 

measured by the ration

*

k

kj

d
α                                               (19)

where |a| means the absolute value of scalar a.

In order to minimize the deteoration of the optimal continuous solution we then use the 

following strategy for deciding which nonbasic variable may be increased from its bound of 

zero, that is, 

*
min , 1, ,k
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d
j n m

α
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K                                     (20)

From the “active constraint” strategy and the partitioning of the constraints corresponding 

to basic (B), superbasic (S) and nonbasic (N) variables we can write

b

N
N

S

x
bB S N

x
bI

x

 
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                                                (21)

or

b S NBx Sx Nx b+ + =                                    (22)

N Nx b=                              (23)

The basis matrix B is assumed to be square and nonsingular, we get

B S Nx Wx xβ α= − −                                    (24)

where
1B bβ −=                                            (25)
1W B S−=                                            (26)

1B Nα −=                                            (27)



Expression (23) indicates that the nonbasic variables are being held equal to their bound. It 

is  evident  through the “nearly”  basic  expression of  Eqn.  (24),  the integerizing  strategy 

discussed  in  the  previous  section,  designed  for  MILP  problem  can  be  implemented. 

Particularly, we would be able to release a nonbasic variable from its bound, Eqn (23) and 

exchange it with a corresponding basic variable in the integerizing process, although the 

solution would be degenerate. Furthermore, the Theorem (1) above can also be extended 

for MINLP problem.

Theorem 2. Suppose the MINLP problem has a bounded optimal continuous solution, then 

we can always get a non-integer yj  in the optimum basic variable vector.

Proof

1. If these variables are nonbasic, the they will be at their bound. Therefore they have 

integer value.

2. If a  yj is superbasic, it is possible to make  yj basic and bring in a nonbasic at its 

bound to replace it in the superbasic. 

However, the ratio test expressed in (14) connot be used as a tool to guarantee that the 

integer  solution  optimal  found gill  remains  in  the  feasible  region.  Instead,  we use  the 

feasibility test  from Minos in order to check whether the integer solution is feasible or 

infeasible.

3.2 Pivoting

Currently, we are in a position where particular basic variable, (xB)k is being integerized, 

thereby a corresponding nonbasic variable, (cN)j*, is being released from its bound of zero. 

Suppose the maximum movement of (xN)j* satisfies

θ* = ∆j*

such  that  (xB)k is  integer  valued  to  exploit  the  manner  of  changing  the  basis  in  linear 

programming, we would be able to move (xN)j* into B (to replace (xB)k) and integer-valued 

(xB)k into  S in order to maintain the integer solution. We now have a degenerate solution 

since a basic variable is at its bound. The integerixing process continues with a new set [B, 

S]. In this case, eventually we may end up with all of the integer variables being superbasic.



Theorem 3. A suboptimal solution exists to the MILP and MINLP problem in which all of 

the integer variables are superbasic.

Proof

1. If all of the integer variables are in N, then they will be a bound.

2. If an integer variable is basic it is possible to either

• interchange it with a superbasic continuous variable, or

• make this integer variable superbasic and bring in a nonbasic at its bound to 

replace it in the basis which gives a degenerate solution.

The other case which can happen is that a different basic variabels (xB)i≠k may hit its bound 

before (xB)k becomes integer. Or in other words, we are in a situation where 
*

1θ = ∆

In this case we move the basic variable (xB)i  into N  and its position in the basic variable 

vector would be replaced by nonbasic (xN)j*. note (xB)k  is still a non-integer basic variable 

with a new value.

4. The Multi-Period Single-Sourcing Problem

In this section we will introduce the notation of the MPSSP and we will show that it is a 
member of the class of convex assignment problems presented in Section 2. Let n denote 
the number of customers, m the number of facilities, and T the planning horizon. The total 
demand of customer j throughout the planning horizon is given by dj. The demand patterns 
over time of the customers are assumed to exhibit a common seasonality, represented by 
nonnegative  seasonal  factors  tσ  for  each  t =  1,  …,  T,  satisfying  1 1T

t tσ=Σ = .  Thus,  the 
demand of customer j in period t is equal to t jdσ . Let bit denote the production capacity at 
facility i in period t. The costs of supplying customer j by facility i in period t are equal to 
cijt. The unit inventory holding costs at facility i in period t are given by hit. (All parameters 
are  nonnegative  by  definition.)  For  convenience,  we  assume  that  each  warehouse  has 
essentially unlimited physical and throughput capacity. In other words, we assume that its 
physical capacity is sufficient to be able to store the cumulative excess production of its 
corresponding plant, even if this plant produces to full capacity in each period. In addition, 
the  throughput  capacity  is  large  enough  for  the  warehouse  to  be  able  to  supply  any 
combination of customers assigned to it. However, these two types of capacity constraints 
can be easily added at little expense to the algorithm.

The MPSSP can be formulated as follows:
minimize



1 1 1 1 1
minimize  

T m n T m

ijt ij it itt i j t i
c x h I

= = = = =
Σ Σ Σ + Σ Σ

subject to (P0)

, 11

n

t j ij it it i tj
d x I b Iσ −=

⋅ Σ + ≤ + i = 1, …, m;  t = 1, …, T (3)

1
1

m

iji
x

=
Σ = j = 1, …, n

xij  ∈  {0, 1} i = 1, …, m;  j = 1, …, n
Ii0  =  0 i = 1, …, m
Iit  ≥  0 i = 1, …, m;  t = 1, …, T

where  xij is equal to 1 if customer  j is assigned to facility i and zero otherwise,  and  Iit 

represents the amount of product in storage at facility  i at the end of period  t. Hereafter 
mnx ∈ ¡   will denote the vector with components xij and similarly for mTI ∈ ¡ .

Romeijn and Romero Morales [21] have shown for a variant of the MPSSP that the 
inventory  variables  can  be  eliminated,  at  the  expense  of  introducing  convexity  in  the 
objective function, i.e., an equivalent formulation with a convex objective function exists. 
In our case, this reformulation of the MPSSP yields a Single-Sourcing Problem (hereafter 
SSP) with convex objective function.

Proposition 4.1 (P0) can be equivalently reformulated as:
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where Hi(u) is the convex function given by the optimal value of the following problem 
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T
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t
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It – It – 1  ≤  bit - σtu   t  =  1, …, T
I0  =  0
It  ≥  0 t  =  1, …, T.

Proof: Let F be the feasible region of (P0). By decomposing (P0), we obtain the following 
equality
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where H(x) is equal to
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Σ i = 1, ..., m;  t  =  1, ..., T

Ii0  =  0 i  =  1, ..., m
Iit  ≥  0 i  =  1, ..., m;  t  =  1, ..., T

This problem is separable in  i,  and moreover for each  i = 1, …,  m it  only depends on 

1
n
j j ijd x=Σ . Thus,  ( )1 1( ) m n

i i j j ijH x H d x= == Σ Σ . Now we will show that the feasible
region of the decomposed problem is equal to the feasible region of (P). Consider some x 
so that there exists a feasible solution (x, I) for (P0). For each facility i, we aggregate the 
capacity constraints over all the periods. Then, we obtain
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The previous inequality shows that x is feasible for (P). Now, consider a feasible solution x 
to (P). Then, we know there exists a vector y ∈ RmT so that

yit  ≤  bit                            i = 1, ..., m;  t = 1, ..., T
and

1 1 1
1, ...,

T T n

it t j ijt t j
y d x i mσ

= = =
Σ = Σ Σ =

(Note that y can be interpreted as a set of feasible production levels corresponding to (x, I) 
in the original three-level formulation of (P0).) Now, define Iit as



1 1 1

T T n

it i t j ijt t j
I y d xτ σ

= = =

 = Σ − Σ ⋅ Σ  
for each i = 1, …, m and t = 1, …, T. It is easy to see that Iit is nonnegative, and (x, I) ∈ F.
 This means that x is a feasible solution for the decomposed problem. With respect to 
function  Hi(u) it is easy to see that has a finite value and thus by strong LP-duality we 
obtain
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Now let [0,1]µ ∈  and fix u; ú ∈ ¡ . Then
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which shows the convexity of Hi(u). □

The function Hi calculates the minimal inventory costs at facility i needed to be able 
to supply the customers assigned to it. We may observe that the value of the inventory costs 
at each facility only depends on the total demand required by the customers assigned to it. 
The previous proposition tells us that the MPSSP belongs to the class of convex assignment 
problems introduced in Section 3.1 by choosing

1 1 1
( )

n T n

i ijt j i j i
j t j

g z c z H d z
= = =

  = +      
Σ Σ Σ for each nz ∈ ¡
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X z d z ττ

ττ σ
=

== =

    = ∈ ≤     

ΣΣ Σ
We know that function  Hi is convex. In fact, it is easy to show that this function is also 
piecewise linear. This is illustrated by an example, where we will suppress the index i for 
convenience. Consider n = 1, T = 3, and 

(1,1,1)Tσ =



(2,2,2)Th =

1 25d =
(50,20,10)Tb =

In that case, we have that H(z1) is equal to the optimal value of
1 2 3minimize  2( )I I I+ +

subject to
1 0 150 25I I z− ≤ −

2 1 120 25I I z− ≤ −

3 2 110 25I I z− ≤ −

0 0I =
0tI ≥ t = 1, 2, 3.

Figure 4: The inventory costs

Figure 4 plots the optimal objective function value of its LP-relaxation as a function of the 
fraction z1 of the item added to the knapsack. Thus, we observe that it is a piecewise linear  
function in the fraction z1 added to the knapsack. Note that each breakpoint corresponds to 
a new inventory variable becoming positive. In this particular case, all inventory variables 
are equal to zero if the fraction of the demand supplied is below 0.4, i.e., z1 ∈ [0; 0:4]. If z1 

∈ (0:4; 0:6], I2 becomes positive. Finally, if z1 ∈ (0:6; 1], I1 also becomes positive.

6. Conclusions
In  this  paper  we  have  presented  a  direct  search  approach  that  was  developed  for  the 
Generalized Assignment  Problem (GAP) to a much richer class of problems, which we 
have called CAP (Convex Assignment Problems). The viability of this approach depends 
critically on the possibility of solving the relaxed problem efficiently. We have identified 
an important subclass of problems, containing many variants of the multi-period single-
sourcing problem (MPSSP), as well as some variants of the GAP, for which this is the case. 
We have applied the method to a particular variant of the MPSSP.
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