BABI

PENDAHULUAN

1.1. Latar Belakang

Energi adalah kebutuhan mendasar bagi manusia yang penggunaan dan harganya cenderung meningkat. Faktor-faktor tersebut menyebabkan perlunya untuk menggunakan sumber energi terbarukan yang dapat diperbarui dalam waktu singkat dan memiliki dampak lingkungan yang minimum. Salah satu sumber energi terbarukan yang berkembang pesat dan berlimpah jumlahnya adalah energi matahari. Bumi memperoleh 16x — Joule dari matahari setiap tahunnya, yang setara dengan 20.000 kali dari kebutuhan seluruh umat manusia di bumi. Indonesia merupakan sebuah negara yang terletak di khatulistiwa memperoleh energi matahari sebanyak 4,8-6,0 kWh/ tiap tahunnya.Potensi energi matahari Indonesia adalah sebesar 207.898 MW, tetapi baru 78,5 MW yang digunakan, energi yang berasal dari matahari dapat dikonversi menjadi listrik dalam beberapa cara, salah satu cara yang paling umum digunakan saat ini adalah fotovoltaik (PV).

Salah satu solusi untuk mengatasi kendala tersebut adalah menggunakan solar tracker. Solar tracker adalah sebuah perangkat yang dapat membantu panel surya untuk memaksimalkan penangkapan radiasi matahari dengan cara membuat panel surya selalu menghadap (tegak lurus) matahari, pada panel surya statis atau sumbu tetap, penangkapan radiasi matahari secara maksimum dapat dicapai dengan mengoptimalkan arah dan kemiringan dari panel itu sendiri secara manual. Arah dan kemiringan panel yang optimal ini dipengaruhi oleh beberapa faktor, antara lain lokasi dan musim di tempat tersebut. Penelitian-penelitian terkait solar tracker, baik sumbu tunggal maupun ganda, menunjukkan adanya peningkatan keluaran panel surya yang nilainya bervariasi.

Penelitian ini bertujuan untuk membuat purwarupa solar tracker sumbu tunggal. Penggunaan solar tracker sumbu tunggal dipilih dengan memperhatikan sisi keluaran yang dihasilkan oleh panel surya dan biaya yang diperlukan. Selain itu, letak Indonesia yang berada di khatulistiwa menyebabkan pergerakan matahari yang tidak terlalu signifikan apabila dibandingkan dengan negara yang terletak di luar lingkar tropis. Keluaran dari solar tracker ini kemudian dibandingkan dengan sebuah panel yang diam (statis) sebagai variabel kontrol untuk melihat unjuk kerja dari solar tracker. (Kurniawan, Taufik, Rancang Bangun).

1.2. Rumusan Masalah

Adapun permasalahan yang dibahas dalam tugas akhir ini adalah :

- 1. Bangaimana memanfaatkan sinar matahari sebagai sumber energy listrik di Indonesia yang tergolong Negara tropis.
- 2. Bangaimana melakukan optimalisasi penyerapan sinar matahari pada alat solar sell (solar cell)

1.3. Batasan Masalah

Adapun batasan lingkup penelitian ini adalah sebagai berikut :

- Membahas desain pototype perangkat Analisa Kinerja Sistem Pembangkit Listrik Tenaga Fotovoltaik 150 Wp Berbasis Solar Tracker Double Axis
- 2. Menganalisa dan membandingkan daya serta luaran lainnya yang dihasilkan panel surya terhadap peletakan posisi panel surya.
- 3. Lokasi penelitian di Kampus UHN Medan.
- 4. Interval pengambilan data yaitu 10 menit sekal

1.4. Tujuan Penelitian

Adapun tujuan penelitian ini sebangai berikut :

- 1. Untuk mengetahui data tegangan yang paling tinggi dan tegangan yang dihasilkan dari Solar Cell 150 Wp berbasis Solar Tracker Double Axis.
- 2. Untuk mengetahui data kuat arus yang paling tinggi dan kuat arus yang dihasilkan Sollar Cell 150 Wp dengan menggunakan Solar Tracker.
- 3. Untuk mendapatkan hal-hal yang mempengaruhi fotovoltaik dari Alat.

4. Untuk mendapatkan data pembangkit listrik tenaga surya yaitu kuat arus, besar daya listrik, intensitas matahari, temperature sekitar, dan angin sekitar.

1.5. Metode Penelitian

Metode penelitian yang digunakan adalah sebagai berikut :

- 1. Survey lapangan dan menemukan lokasi penelitian.
- 2. Survey literature, yakni berupa studi kepustakaan, kajian dari buku buku,jurnal terkait dan artikel terkait.
- 3. Konsultasi, metoda yang dilakukan untuk mendapatkan informasi tambahan yang mendukung desain Analisa Kinerja Sistem Pembangkit Listrik Tenaga Fotovoltaik 150 Wp Berbasis Solar Tracker Double Axis.
- Analisa terstruktur, metoda yang dilakukan untuk mendesain Analisa Kinerja Sistem Pembangkit Listrik Tenaga Fotovoltaik 150 Wp Berbasis Solar Tracker Double Axis dan untuk menganalisa rancangan yang di buat.
- 5. Uji coba, metoda yang digunakan untuk menguji Analisa Kinerja Sistem Pembangkit Listrik Tenaga Fotovoltaik 150 Wp Berbasis Solar Tracker Double Axis.

1.6. Manfaat penelitian

Manfaat yang diperoleh dari perancangan Analisa Kinerja Sistem Pembangkit Tenaga Listrik Fotovoltaik 150 Wp Berbasis Solar Tracker Double Axis pada Tugas Akhir ini adalah sebangai berikut :

- Sebangai informasi awal penggunaan Analisa Kinerja Sistem Pembangkit Listrik Tenaga Fotovoltaik 150 Wp Berbasis Solar Tracker Double Axis dalam menghemat energy listrik dari beban bahan bakar fosil serta mengurangi konsumsi bahan bakar minyak terhadap perkembangan industry dan teknologi.
- Memberikan informasi tentang daya tegagan listrik yang didapat dengan menggunakan Analisa Kinerja Sistem Pembangkit Listrik Tenaga Fotovoltaik 150 Wp Berbasis Solar Tracker Double Axis.

- 3. Membantu mengurangi pemanasan global dengan menggunakan sumber energi yang ramah lingkungan.
- Mendapatkan daya dan tegagan listrik pada panel suya dengan menggunakan Analisa Kinerja Sistem Pembangkit listrik Tenaga Fotovoltaik 150 Wp Berbasis Solar Tracker Double Axis.

BAB II

TINJAUAN PUSTAKA

2.1. Pengertian Listrik Tenaga Surva

Pembangkit listrik tenaga surya adalah pembangkit listrik yang mengubah energi surya menjadi energi listrik. Pembangkitan listrik bisa dilakukan dengan dua cara, yaitu cara langsung menggunakan fotovoltaik dan secara tidak langsung dengan pemusatan energy surya. Fotovoltaik mengubah secara langsung energi cahaya menjadi listrik menggunakan efek *fotoelektrik* (*Energi Sources: Solar Department Of Energi*).

Sell surya (*photovoltaic*) merupakan pembangkit listrik yang mampu mengkonversi sinar matahari menjadi arus litrik. Energi matahari pada fakatnya menjadi suatu sumber energi yang paling menjanjikan dibandingkan dengan energi yang lainnya, satu-satunya alasan hal ini diungkapkan karena sampai saat ini sifat energi matahari berkelanjutan (*sustainable*) serta jumlahnya tidak terbatas (*Hans Tholstrup*).

Solar cell konvensional bekerja menggunakan prinsip p-n junction, yaitu junction antara semikonduktor tipe-p dan tipe-n. Semikonduktor tipe-n mempunyai kelebihan elektron (muatan negative) sedangkan tipe-p mempunyai kelebihan hole (muatan positif) dalam struktur atomnya. Adanya perbedaan muatan pada sambungan p-n disebut dengan daerah deplesi yang akan mengakibatkan munculnya medan listrik yang mampu menghentikan laju difusi selanjutnya. Medan listrik tersebut mengakibatkan munculnya arus drift, yaitu arus yang dihasilkan karena munculnya medan listrik. Akan tetapi, arus ini terimbangi oleh arus difusi sehingga secara keseluruhan tidak ada arus listrik yang mengalir pada semikonduktor sambungan p-n tersebut (Ady, 2008).

2.2 Photovoltaic

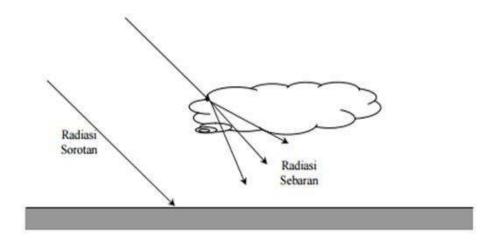
Kata *photovoltaic* terdiri dari dua kata yaitu *photo* dan *volta.Photo* berarti cahaya (dari bahasa Yunani yaitu *phos,photos*:cahaya) dan *volta* (berasal dari nama Alessandro Volta seorang fisikawan italia yang hidup antaratahun 1745-1827) yang berarti unit tegangan listrik. Kata *photovoltaic*

biasa disingkat dengan PV. *Photovoltaic* adalah teknologi yang menghasilkan tenaga listrik DC (*directcurrent*) dari bahan semikonduktor ketika terpapar oleh foton. Selama cahaya menyinari *solar cell* (nama untuk individual elemen *photovoltaic*), maka akan menghasilkan tenaga listrik.Ketika tidak ada cahaya,energy listrik juga berhenti dihasilkan.

Sinar matahari memancarkan gelombang dengan panjang gelombang berbeda-beda dari 250nm sampai dengan 2500nm berupa *ultraviolet,infrared* sampai cahaya tampak. Tidak semua sinar langsung cahaya matahari pada atmosfer sampai kepermukaan bumi. Atmosfer melemahkan banyakbagian spektrum cahaya. Misalnya *x-ray* hampir semuanya diserap sebelum mencapai tanah. Beberapa persen radiasi *ultraviolet* juga disaring oleh atmosfer, beberapa dipantulkan kembali keangkasa dan beberapa bagian lagi tersebar diatmosfer yang membuat langit terlihat biru.

2.2.1 Faktor Yang Mempengaruhi Kinerja Fotovoltaic

Suplai energy surya dari sinar matahari yang diterima oleh permukaan bumi sangat besar yaitu mencapai 3 x 10 joule pertahun. Jumlah energi sebesar tersebut setara dengan 10.000 kali konsumsi energi di seluruh dunia saat ini. Dengan menutup 0,1 % saja permukaan bumi dengan divais *solar cell* yang memiliki efisiensi 10 % sudah mampu untuk menutupi kebutuhan energi di seluruh dunia saat ini. Cara kerja sell surya adalah dengan memanfaatkan teori cahaya sebagai partikel. Sebagaimana diketahui bahwa cahaya baik yang tampak maupun yang tidak tampak memiliki 2 buah sifat yaitu dapat sebagai gelombang dan dapat sebagai partikel yang disebut *photon*. Penemuan ini pertama kali diungkapkan oleh Einstein pada tahun 1905.


Energi yang dipancarkan oleh sebuah cahaya dengan kecepatan c dan panjang gelombang dirumuskan dengan persamaan :

```
c = Kecepatan cahaya dalam vakum ( 2,998 X 10<sup>8</sup> M/s )
= Panjang gelombang (M)
f = Frekuensi ( Hz )
```

Persamaan di atas juga menunjukkan bahwa photon dapat dilihat sebagai sebuah partikel energi atau sebagai gelombang dengan panjang gelombang dan frekuensi tertentu. Dengan menggunakan sebuah divais semikonduktor yang memiliki permukaan yang luas dan terdiri dari rangkaian dioda tipe p dan n, cahaya yang datang akan mampu dirubah menjadi energi listrik. Untuk mendapatkan output maksimal dari PV, ada beberapa faktor sangat mempengaruhi yaitu:

1. Radiasi Matahari

Radiasi matahari merupakan pancaran energi yang berasal dari proses thermonuklir yang terjadi di matahari, atau dapat dikatakan sumber utama unntuk proses-proses fisika atmosfer yang menentukan keadaan cuaca dan iklim di atmosfer bumi. Radiasi surya memegang peranan penting dari berbagai sumber energi lain yang dimanfaatkan manusia. Energi dari matahari tiba di bumi dalam bentuk radiasi elektromagnetik yang mirip dengan gelombang radio tetapi mempunyai kisaran frekuensi yang berbeda. Energi dari matahari tersebut dikenal di Indonesia sebagai energi surya. Energi surya diukur dengani kepadatan daya pada suatu permukaan daerah penerima dan dikatakan sebagai radiasi surya. Rata - rata nilai dari radiasi surya diluar atmosfir bumi adalah 1.353 W/m, dinyatakan sebagai konstanta surya. Total energi yang sampai pada permukaan horizontal dibumi adalah konstanta surya dikurangi radiasi akibat penyerapan dan pemantulan atmosfer sebelum mencapai bumi dan nilai tersebut disebut sebagai radiasi surya global. Radiasi surya global terdiri dari radiasi yang langsung memancar dari matahari (direct radiation) dan radiasi sebaran yang dipancarkan oleh molekul gas, debu dan uap air di atmosfer (diffuse radiation).

Gambar 2.1: Radiasi Langsung dan Radiasi Sebaran pada Permukaan Horizontal

Insolasi surya merupakan intensitas radiasi surya rata-rata yang diterima selama 1 jam, dinyatakan dengan lambing I dan satuan W/m. Nilai insolasi surya dipengaruhi oleh waktu siklus perputaran bumi, kondisi cuaca meliputi kualitas dan kuantitas awan, pergantian musim dan posisi garis lintang. Intensitas radiasi surya pada kondisi cerah (*clear day*) akan bertambah dari pagi, sejak terbit sampe siang hingga tercapainya kondisi puncak dan turun sampai matahari terbenam pada sore hari. Lama nya matahari bersinar cerah dalam 1 hari dinyatakan sebagai jam surya. Untuk Indonesia, jam surya adalah sekitar 4 – 5 jam per hari. Jumlah intensitas radiasi / insolasi surya yang diterima dalam 1 hari dinyatakan dengan satuan *kilowatt-hours*/m (kwh/m). Produksi energi surya pada suatu area dapat dihitung sebagai berikut

Energi surya yang dihasilkan (Watt) = Insolasi surya (W/m) x Luas area (m)

Cahaya dapat dikatakan sebagai sutau bagian yang mutlak dari kehidupan manusia. Untuk mendukung teknik pencahayaan buatan yang benar, perlu diketahui seberapa besar intensitas cahaya yang dibutuhkan pada suatu tempat.Iradiasi matahari yang diterima bumi terdistrubusi pada beberapa range panjang gelombang, mulai dari 300 nm sampai dengan 4 mikron. Sebagian radiasi mengalami refleksi di atmosfer (diffuse radiation) dan sisanya dapat sampai ke permukaan bumi (direct radiation). Kedua radiasi ini yang dipakai untuk mengukur besaran radiasi yang diterima sel surya.

2. Temperatur modul surya

Intensitas cahaya bukanlah satu-satunya parameter eksternal yang memiliki pengaruh penting pada kurva I-V, terdapat juga pengaruh temperatur. Temperatur memiliki peranan penting untuk memprediksi karateristik I-V.komponen semikonduktor seperti diode sensitif terhadap perubahaan temperatur, begitu pula dengan sel surya. Secara umum, sebuah modul surya dapat normal (pada temperatur 25 °C). Temperatur memengaruhi persamaan karateristik dengan 2 cara, yaitu secara langsung melalui T pada bagian eksponensial dan secara tidak langsung, efeknya terjadi pada Io. Salah satu parameter solar yang dipengaruhi oleh temperatur adalah tegangan open circuit (Voc). Efek meningkatnya temperatur akan mengurangi secara linear nilai tegangan open circuit. Besarnya pengurangan ini secara terbalik sebanding terhadap Voc, dan sel dengan nilai Voc yang lebih tinggi, pengurangan nilai tegangannya akan lebih kecil ketika temperatur naik. Arus yang dibangkitkan cahaya meningkat sedikit dengan meningkatnya temperatur, karena meningkatkan jumlah carrier yang dihasilkan secara termal dalam cell. Setiap kenaikan temperatur modul surya 1 °C (dari 25 °C) akan mengakibatkan berkurang sekitar 0,5 % pada total tenaga (daya) yang dihasilkan. Untuk menghitung besarnya daya yang berkurang pada saat temperatur di sekitar modul surya mengalami kenaikan C dari temperatur standarnya, dipergunakan rumus sebagai berikut (Solarex, 2008):

Pengaruh suhu terhadap output sel surya dapat dilihat dalam rumus dibawah ini:

P saat t naik °C = 0,5 % / C x PMPP x kenaikan temperatur (°C)......(2.3),literatur 2, hal. 104

Dimana:

P saat t naik C = Daya pada saat temperature naik C dari temperature standarnya.

PMPP = Daya keluaran maksimum modul surya.

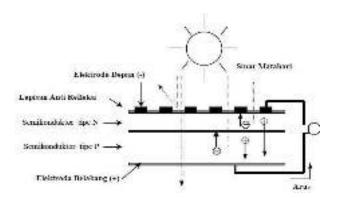
Daya keluaran modul surya pada saat temperaturnya naik menjadi t C dari temperatur standarnya diperhitungkan dengan rumus sebagai berikut;

PMPP saat naik menjadi t °C = PMPP - P saat t naik °C......(2.4),Literatur 1, hal.105

PMPP saat maik menjadi it surya han daya keluaran modul surya han alam kenjadi ya keluaran modul surya han asaat

3. Efek intensitas cahaya matahari

Intensitas cahaya matahari memiliki pengaruh yang penting bagi arus short circuit, tegangan open circuit, fill factor, efisiensi dan hambatan seri maupun hambatanshunt. Intensitas cahaya dapat dinyatakan dalam juumlah matahari, dengan 1 matahari sesuai dengan standar iluminasi pada AM 1.5 atau 1 KW/m. Arus short circuit secara langsung berhubungan dengan jumlah foton yang diserap oleh material semikonduktor dan kemudian sebanding dengan nilai intensitas cahaya, sedangkan tegangan open circuit hanya berubah sedikit ketika intensitas cahaya rendah. Intensitas cahaya dapat berbeda setiap hari, hal tersebut menyebabkan energi yang masuk solar celljuga akan berubah dengan variasi nilai antar 0 s/d 1 KW/m. Pada cahaya yang rendah, efek resistansi shunt akan bertambah. Berkurangnya intensitas cahaya menyebabkan arus yang melewati solar cell berkurang dan nilai resistansi seri hampir sama dengan nilai resistansi shunt-nya. Ketika 2 resistansi tersebut hampir sama, total arus yang mengalir melalui resistansi shunt bertambah, kemudian akan menambah daya yang hilang karena resistansis hunt. Sehingga pada kondisi berawan, solar cell dengan resistansi shunt yang tinggi dapat menahan daya yang masuk lebih banyak dari solar cell dengan resistansi shunt yang rendah.

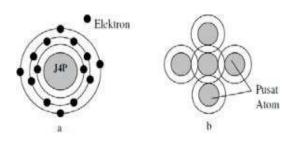

2.3. Panel Surya (Solar Cell)

Panel surya merupakan salah satu alat konversi energi dari energi surya menjadi energy listrik. Keluaran dari panel surya menghasilkan tegangan DC. Pada umumnya setiap sel dapat menghasilkan tegangan keluaran 0,5 – 0,,6 V. dari hasil surya yang terdiri dari 32 – 36 solar sel dihubungkan secara seri, maka akan menghasilkan kurang lebih 16 V. tegangan ini cukup untuk mengisi accu 12 V. Prinsip dasar dari pembuatan sel surya adalah efek *fotovoltaic*.

Solar cell terbuat dari material semikonduktor yang memiliki ikatan electron lemah yang menempati pita energi yang disebut valence band.

Ketika energy melebihi ambang batas yang dinamakan bandgap energi diaplikasikan ke elektron valensi, ikatan akan rusak dan beberapa electron bebas untuk bergerak dalam ikatan energy baruyang dinamakan conduction band yang dapat menyalurkan listrik melalui material tersebut.Kemudian elektron bebas pada conduction band akan dipisahkan dari valence band oleh band gap(diukur dalam satuan elektron volt atau eV). Energi yang dibutuhkan untuk membebaskan elektron ini dipenuhi oleh foton yang merupakan partikel cahaya. Ketika solar cell terpapar cahaya matahari, foton akan menabrak elektron valensi, merusakikatan dan mendorong mereka ke conduction band. kontak selektif khusus Disana terdapat sebuah yang mengumpulkan conductionband elektron, menggerakkan electron tersebut kerangkaian eksternal. Elektron akan kehilangan energy mereka dan dikembalikan ke solar cell melalui kontak selektif ke dua, yang mengembalikan mereka kevalence band dengan energy yang sama ketika pertama kali. Perpindahan electron pada rangkaian eksternal inilah yang dinamakan sebagai arus listrik.

Parameter *solar cell* yang paling berpengaruh pada kurva karakteristik arus-tegangan yaitu arus hubung singkat dan tegangan hubungan terbuka untuk parameter internal, sedangkan parameter eksternalnya meliputi suhu dan radiasi cahaya matahari.

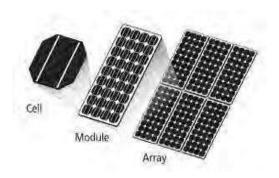


Gambar 2.2 : Struktur lapisan solar cell

Cara kerja sel surya adalah dengan memanfaatkan teori cahaya sebagai pertikel, yang mana cahaya baik yang tampak maupun yang tidak tampak mempunyai dua sifat yaitu dapat sebagai gelombang dan dapat pula sebagai

partikel yang biasa disebut dengan foton.Penemuan ini pertama kali diungkapkan olehseorang fisikawan ternama yaitu Einstein tahun 1905. Besarnya energi yang dipancarkan oleh sebuah cahaya dengan panjang gelombang tertentu dapat dicari dengan rumus berikut:

Sel surya merupakan semikonduktor yang radiasi surya mengenainya langsung diubah menjadi energi listrik. Material yang sering digunakan dalam pembuatan sel surya adalah silikon Kristal yang mana dimurnikan hingga satu tingkat yang tinggi. Atom merupakan partikel yang membentuk suatu unsur dan terdiri dari inti bermuatan positif yang biasa disebut proton dan neutron bermuatan 10 netral.Inti atom dikelilingi oleh elektron bermutan negatif.Sebuah atom silikon terdiri dari sebuah inti yang berisi proton dan dikelilingi oleh 14 elektron yang beredar dalam lintasan tertentu. Jumlah maksimum dari elektron dalam tiap lintasan mengikuti pola 2 n2, yang mana n adalah nomor lintasan dari atom. Ketika atom-atom silikon bergabung membentuk zat padat, maka atomatom tersebut akan membentuk suatu polar teratur yang disebut sebagai Kristal. Satu atom silikon mempunyai 4 elektron valensi dan 4 atom tetangga. Setiap atom tetangga memberikan sebuah elektron yang dipakai bersama-sama dengan atom yang berada ditengah. Karena atom yang ditengah mendapatkan tambahan 4 elektron dari tetangga maka jumlah elektron valensi menjadi 8 buah, karena inti atom yang berdekatan memiliki muatan positif akan menarik elektron-elektron yang dipakai bersama sehingga menciptakan gaya yang sama besar akan tetapi berlawanan arah



Gambar 2.3: Ikatan Kovalen Kristal Silikon

Seperti gambar diatas, penarikan dalam arah yang berlawanan ini menyebabkan atom-atom terikat dalam ikatan kovalen (Malvino, 1986).

Berdasarkan sel surya penyusunnya, panel surya dibedakan sebagai berikut:

- Monokristal (Mono-crystaline) Merupakan panel surya yang paling efisien.
 - Panel ini memiliki efisiensi sampai 15 %. Kelemahan dari panel jenis ini adalah tidak akan berfungsi baik pada saat sinar matahari kurang melimpah
 - atau mendung, efisiensinnya akan turun drastis apabila cuaca berawan.
- 2. Polikristal (*Poly-crystalline*) Untuk jenis sel surya yang satu ini memiliki susunan kristal yang acak karena difabrikasi dengan proses pengecoran. Tipe ini membutuhkan luas permukaan yang lebih luas untuk mendapatkan daya yang sama dibandingkan dengan jenis monokristalin. Efisiensi yang dihasilkan lebih rendah dibandingkan dengan monokristalin
- Silikon amorphouse (a-Si) digunakan untuk bahan baku panel sel surya untuk kalkulator pada waktu tertentu. Kinerja dari amorphouse lebih rendah dibandingkan sel surya c-Si yang merupakan kristal tradisional, namun tidak terlalu penting dalam kalkulator yang menggunakan tenaga yang sangat minim. Perkembangan pada teknik a-Si saat ini membuat mereka menjadi lebih efektif untuk area yang lebih luas yang digunakan sel surya. Efisiensi tinggi dapat diproleh ketika penyusunan beberapa layar sel a-Si yang tipis dibagian atas satu sama lain, setiap rangkaian diatur untuk bekerja pada frekuensi cahaya tertentu. Untuk produksi skala besar, keuntungannya bukan pada efisiensi melainkan untung pada biaya. Sel a-Si menggunakan sekitar 1 % silikon daripada sel c-Si dengan biaya silikon merupakan faktor terbesar dalam biaya produksi sel.

Gambar 2.4 Perbedaan *cell*, *module* dan*array*. Sumber (ETAP 2016).

2.3.1 Posisi panel surya terhadap pergerakan matahari

Pada panel surya perlu diketahui pergerakan / rotasi bumi terhadap matahari yang mempunyai poros miring. Poros miring tersebut yang menyebabkan arah sinar bisa berubah. Berikut gambar bumi mengitari matahari yang mana posisi bumi berotasi dengan poros yang miring.

Gambar 2.5: Rotasi Bumi terhadap Matahari

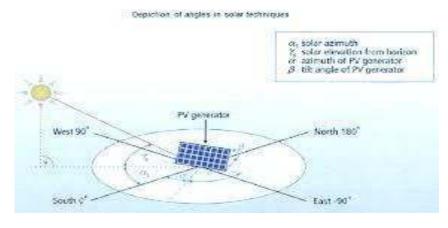
Efisiensi maksimum modul surya akan meningkat jika sudutnya saat terjadi sinar matahari selalu berada pada saat sudut 90. Pada kenyataannya peristiwa dari radiasi matahari bervariasi berdasarkan pada garis lintang (*latitude*) dan deklanasi maatahari. Fakta yang lain bahwa poros rotasi bumi memiliki kemiringan 23,45 terhadap bidang dari orbit bumi oleh matahari, sehingga pada garis lintang tertentu tinggi dari matahari pada langit bervariasi setiap harinya.

Untuk mengetahui ketinggian maksimum (dalam derajat) ketika matahari mencapai langit (a), secara mudah dengan menggunakan rumus berikut:

$$a = 90^{\circ} - lat - \delta \text{ (Nhemisphere)}.....(2.6), Literatur 2, hal. 107$$

$$a = 90^{\circ} + lat - \delta \text{ (Shemisphere)}....(2.7), Literatur 2, hal. 107$$

Sedangkan sudut yang harus dibentuk oleh modul surya terhadap permukaan bumi (b), dapat diproleh dengan persamaan sebagai berikut:


$$B = 90^{\circ} - \alpha$$
(2.8), Literatur 2, hal. 107

Keterangan:

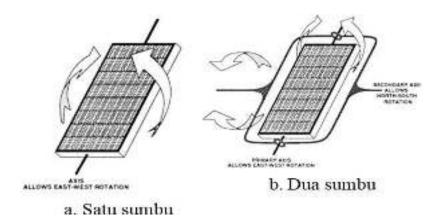
Lat: garis lintang (*latitude*) lokasi instalasi panel surya terpasang (dalam satuan derjat)

δ : sudut dari deklinasi matahari [23,34°]

Apabila sudut dari ketinggian maksimum matahari diketahui, maka sudut kemiringan dari panel surya juga dapat diketahui. Tidak hanya cukup diketahui ketinggian maksimum matahari saja untuk menentukan orientasi yang optimal dari panel surya. Orientasi dari panel surya dapat di indikasikan dengan dengan sudut asimut (azimuth angle) pada devasi terhadap arah optimum dari selatan (untuk lokasi di belahan bumi utara), atau dari utara (untuk lokasi di belahan bumi selatan). Nilai positif dari sudut azimuth menunjukkan orientasi ke barat, sebaliknya nilai negatif menunjukkan orientasi ke timur.

Gambar2.6: Kombinasi inklinasi dan orientasi menentukan eksposisi panel

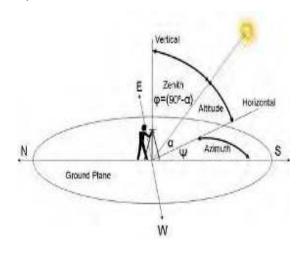
2.4 Sistem *Tracking* Cahaya Matahari


Sistem *tracking* cahaya matahari adalah sebuah kesatuan komponen atau elemen yang digabungkan menjadi satu untuk mengontrol posisi alat sistem *tracking* dengan tujuan mengusahakan permukaan modul *solar cell* selalu menghadap arah datangnya cahaya matahari.Sistem *tracking* cahaya matahari ada beberapa jenisdan dapat diklasifikasikan berdasarkan beberapa kriteria.Klasifikasi pertama dapat dibuat berdasarkan jumlah sumbu putaran.

Gambar 2.7 :Tipe *solar tracking* berdasarkan sumbu putaran (Sumber INVOTEK)

Pada klasifikasi ini system *tracking* cahaya matahari dibedakan menjadi dua yaitu satu sumbu dan dua sumbu. Sistem *tracking* satu sumbu adalah metode dimana modul *solar cell* menjejak cahaya matahari dari timur ke barat menggunakan satu titik poros, sedangkan sistem *tracking* dua sumbu menggunakan dua titik poros untuk menjejak cahaya matahari dari timur ke barat dan dari utara keselatan. Sistem *tracking* satu sumbu terbagi lagi menjadi tiga jenis yaitu sumbu vertikal, sumbuh orizontal dan sumbu miring. Sedangkan system *tracking* dua sumbu ada dua jenis yaitu *azimuth-elevation* dan *tilt-roll*.

Klasifikasi lain dari sistem *tracking* cahaya matahari dapat dibuat berdasarkan tipe orientasi. Berdasarkan kriteria ini kita dapat mengidentifikasi system tracking cahaya matahari berdasarkan pada lintasan matahari yang telah dihitung sebelumnya dan *orientasion-line* yang bereaksi terhadap cahaya matahari secara langsung.



Gambar 2.8:Sistem *tracking* satu sumbu dan dua sumbu (Sumber INVOTEK).

Dalam penelitian ini digunakan sistem *tracking* dua sumbu karena sistem *tracking* cahaya matahari mempunyai bagian penggerak dan sistem control yang memerlukan biaya tinggi, maka system *tracking* dua sumbu menjadi solusi terbaik untuk *solar cell* berukuran kecil.

2.5. Double Axis

Sistem *double* axis berfungsi untuk merubah posisi panel surya menyesuaikan dengan sudut azimuth dan sudut zenith matahari. Posisi matahari menggunakan sistem koordinat horizontal di bumi dengan ditentukan oleh sudut altitude / elevasi, sudut azimuth dan sudut zenith.

Gambar 2.9 : Sudut *azzimuth,zenit*,dan *atitude*Sumber:(Github,2016)

Sudut elevasi atau *altitude* adalah sudut yang terbentuk dari garishorizontal bumi ke atas (langit). Sudut *azimuth* adalah sudut yangterbentuk searah jarum jam dan diukur mulai dari utara bumi (0 derajat).

Gambar 2.10 : Rangka *Double Axis* (Dua Sumbu)

2.6 Solar Tracker

Sistem kendali *tracking* sinar matahari merupakan salah satu pengembangan teknologi dalam rangka konservasi energy dengan memanfaatkan energi matahari. Sistem kendali *tracking* dibuat untuk diterapkan lebih lanjut pada sebuah perangkat panel surya sebagai alat pengumpul energi matahari sehingga posisi panel surya dinamis.(As Habul Kahfi, dkk.2015).

Solar tracking merupakan rangkaian kontrol yang mampu mendeteksi dan mengikuti arah matahari agar solar cell selalu tegak lurus dengan matahari supaya intensitas cahaya matahari yang diterima sel surya optimum dengan cara mengatur gerakan motor. Prinsip sistem kendali ini adalah menjejak pergerakan sinar matahari dari matahari terbit sampai tenggelam agar panel selalu tegak lurus dengan matahari sehingga jumlah sinar yang diproleh maksimal dan menghasilkan daya yang maksimal juga.

2.7 Mikrokontroler

Mikrokontroler adalah sistem mikroprosesor lengkap yang terkandung didalam sebuah chip. *Mikrokontroler* berbeda dari *mikroprosesor* serba guna yang digunakan dalam sebuah PC, karena didalam sebuah *mikrokontroler* umumnya juga telah telah berisi komponen pendukung sistem minimal *mikroprosesor*, yakni memori dan antarmuka I/O, sedangkan didalam mikroprosesor umumnya hanya berisi CPU saja (Wikipedia 2015).

Adapun *mikrokontroler* yang dipakai peneliti adalah *mikrokontroler* jenis Arduino Uno sebagai pengontrol elektronik untuk membaca dan menulis data untuk tersambung ke komputer sebagai berikut.

1. Arduino Uno

Arduino uno adalah board mikrokontroller yang dengan mikrokontroller jenis AVR ATmega 328. Arduino uno merupakan perangkat hardware open source (OSH – Open source Hardware). Arduino sebagai sebagai perangkat hardware open source berarti siapapun memiliki kebebasan untuk dapat membuat dan mengembangkan arduino sendiri. Mikrokontroller Arduino dapat dipasangkan dengan bermacam-macam sensor dan aktuator lainnya. Adapun sensor dan aktuator yang dapat dipasangkan pada arduino seperti sensor gerak, ultrasonic, panas, suara, Ethernet shield, LED Display dan yang lainnya. (Margelis, 2011).

Software open source ini digunakan untuk menulis kode pemrograman, debug error, dan upload program pada mikrokontroller board Arduino. Arduino mendukung perangkat mikrokontroller yang dapat dihubungkan dengan computer menggunakan kabel USB sebagai loader dan port komunikasi serial.

Gambar: 2.11 Arduino Uno

2. Perangkat pendukung

a. Motor Servo

Motor Servo merupakan perangkat atau *actuator* putar (motor) yang mampu bekerja dua arah (*Clockwise dan Counter Clockwise*) dan dilengkapi rangkaian kendali dengan sistem *closed feedback* yang terintegrasi pada motor tersebut. Pada motor servo posisi putaran sumbu (*axis*) dari motor akan diinformasikan kembali ke rangkaian kontrol yang ada didalam motor servo. Motor ini sangat kompleks karena disusun dari *gearbox*, motor dc, variable resistor dan sistem kendali, sehingga nilai ekonomis dari motor ini juga sangat tinggi dibandingkan motor dc yang lain yg ukurannya sama. Potensiometer sebagai penentu batas maksimal dari putaran sumbu motor servo sedangkan arah putaran dan sudut dari sumbu motor servo dapat diatur berdasarkan pengaturan *duty cycle* sinyal PWM(*Pulse Width Modulation*) pada pin kendali motor servo (Maulana, 2014)

Gambar 2.12: Motor Servo

b. Power Supplay

Power supplay sebagai alat atau perangkat keras yang mampu menyuplai tenaga atau tegangan listrik secara langsung dari sumber tegangan listrik ke tegangan listrik yang lainnya. Power supply biasanya digunakan untuk komputer sebagai penghantar tegangan listrik secara langsung kepada komponen-komponen atau perangkat keras lainnya yang ada dikomputer tersebut, seperti hardisk, kipas, motherboard dan lain sebagainya. Power supply memiliki input dari tegangan yang berarus alternating current (AC) dan mengubahnya menjadi arus direct current (DC) lalu menyalurkannya ke berbagai perangkat keras yang

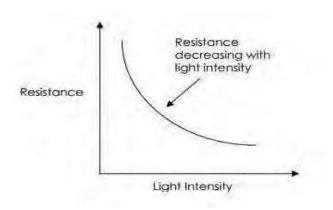
ada dikomputer kita. Karena memang arus *direct current* (DC) - lah yang dibutuhkan untuk perangkat keras agar dapat beroperasi, *direct current* biasa disebut juga sebagai arus yang searah sedangkan *alternating current* merupakan arus yang berlawanan (Tampubolon, 2010).

Gambar 2.13: *Power Supplay*

c. Liquid Crystal Display (LCD)

Liquid Crystal Display (LCD) adalah yang biasa digunakan untuk menampilkan suatu simbol, angka maupun huruf. Liquid Crystal Display (LCD) terdiri dari beberapa pin yang berfungsi untuk pengontrolan pemakaiannya. Liquid Crystal Display (LCD) yang digunakan pada alat ini adalah M1632 atau enam belas karakter dengan dua baris (Erlangga, 2011).

Gambar 2.14: Liquid Crystal Display (LCD)


d. Light Dependen Resistor (LDR)

Light Dependen Resistor (LDR) adalah jenis resistor yangbiasa digunakan sebagai detektor cahaya atau pengukur besaran konversi cahaya. Light Dependen Resistor (LDR), terdiri dari sebuah cakram semikonduktor yang mempunyai dua buah elektroda pada permukaanya.

Fungsi dari LDR adalah untuk menghantarkan arus listrik ketika kondisi cahaya terang dan akan menghambat arus ketika kondisi cahaya kurang/gelap. Dengan kecilnya nilai hambatan LDR pada saat intensitas cahaya tinggi, maka tegangan yang melalui LDR akan tinggi. Dan sebaliknya, jika intensitas cahaya rendah maka nilai hambatan dari LDR akan tinggi dan menyebabkan tegangan yang melewati LDR akan kecil.Pada umumnya, nilai hambatan LDR akan mencapai 200 Kilo Ohm(k Ω) pada kondisi gelap dan menurun menjadi 500 Ohm (Ω) pada kondisi cahaya terang.

Gambar 2.15 : *Light Dependen Resistor* (LDR)

Gambar 2.16 Kurva pengaruh intensitaas cahaya terhadap LDR. Sumber : (zonaelektro.net/,2014).

2.8 Teori Efisiensi Sell Surya

Kemampuan sel surya yang dapat menghasilkan energi listrik tentu berkaitan dengan teknologi *fotovoltaik* yang mampu menyerang gelombang elektromagnetik.Pada dasarnya prinsip sel surya ini berkebalikan dengan prinsip kerja LED (light Emitting Diode) yang mengubah energi listrik menjadi energi cahaya (Purnama, Ajeng, 2014). Kemampuan keseluruhan dari kekuatan mcSi sel surya bergantung pada parameter lingkungan misalnya intensitas cahaya, besarnya sudut datang sinar matahari, dan temperatur sel. Meskipun parameter dari fotovoltaik misalnya saja *open-circuit vltage*, *short circuit current*, *maximum output power*, *fill factor*, dan efisiensi secara mendasar menjadi hal yang mempengaruhi intensitas cahaya (Chander, 2015). Umumnya efisisiensi dari sel surya digunakan sebagai parameter untuk membandingkan kinerja dari suatu sel surya terhadap sel surya lain dengan perlakuan yang serupa.

Keluaran dari panel surya menghasilkan tegangan DC. Daya input dari panel surya adalah intensitas cahaya matahari (W/m²) dan luas penampang panel surya (m²). Untuk menentukan daya input panel surya dapat digunakan rumus dari persamaan berikut:

P in = Daya yang masuk pada panel surya (W)

I rad = Intensitas cahaya matahari (W/m^2)

A = Luas penampang panel surya (m^2)

Sedangkan output dari panel surya adalah arus dan tegangan. Untuk menentukan daya output dari panel surya digunakan rumus dari persamaan berikut:

P out = Daya yang keluar pada panel surya (W)

Vpv = Tegangan panel surva (V)

Ipv = Arus keluar panel surya (A)

Efisiensi konversi daya dari modul surya adalah pada suhu tertentu tergantung pada tegangan sirkuit terbuka, arus sirkuit pendek dan kepadatan, dan faktor bentuk dikerahkan oleh modul surya. Efisiensi modul surya sebagai fungsi arus hubungan pendek, tegangan sirkuit trbuka, faktor pengisian, dan daya masukan. Dari spectrum matahari dapat dihitung dengan menggunakan ekspresi berikut:

 $\eta_{\text{mod}} = \text{Isc x Voc x FF / Pin.}$ (2.11), Literatur 10,hal.139

Keterangan:

η = Efisiensi modul surya

P in = Daya Masuk

Voc = Open Circuit Voltage

Isc = Short Circuit Current

Kerapatan daya output maksimum dari sel surya adalah fungsi densitas arus pendek, tegangan sirkuit terbuka, Faktor bentuk dan dapat diberikan sebagai,

P_{max}= Jsc x Voc x FF (W/cm).....(2.12),Literatur 10,hal.142

Keterangan:

Jsc = Densitas arus Pendek

Voc = Tegangan sirkuit terbuka

FF = Faktor bentuk

2.9 Teori Dasar Intensitas Radiasi Matahari

Matahari merupakan kendali cuaca serta iklim yang sangat penting dan sebagai sumber energi utama di bumi yang menggerakkan udara dan arus laut. Energi matahari diradiasikan ke segala arah, sebagian hilang ke alam semesta, dan hanya sebagian kecil saja yang dapat diterima bumi. Bumi berevolusi mengelilingi matahari pada jarak rata-rata 93 juta mil. Orbit bumi berbentuk elips dengan eksentrisitas sangat kecil (0,017), ini berarti orbit bumi hampir berbentuk lingkaran. Jarak matahari-bumi yang terdekat disebut perihelion, terjadi pada tanggal 4 Januari dengan jarak 91,5 juta mil, dan jarak matahari-bumi yang terjauh disebut aphelion terjadi pada tanggal 5 Juli dengan jarak 94,5 juta mil (Tjasyono,2004:12).

Radiasi adalah suatu bentuk energi yang dipancarkan oleh setiap benda yang mempunyai suhu di atas nol mutlak dan merupakan satu-satunya bentuk energi yang dapat menjalar di dalam vakum angkasa luar. Radiasi matahari merupakan gelombang elektromagnetik yang terdiri atas medan listrik dan medan magnet. Matahari setiap menit memancarkan energi sebesar 56x1026 kalori. Dari energi ini bumi menerima 2,55x10¹⁸ kalori atau hanya ½ x 10⁹ nya (Prawirowardoyo,1996:32).

Radiasi matahari yang jatuh ke bumi disebut insolasi.Insolasi adalah penerimaan energi matahari oleh permukaan bumi, bentuknya adalah sinar-sinar gelombang pendek yang menerobos atmosfer. Radiasi matahari menjalar di dalam angkasa luar tanpa kehilangan energi, intensitasnya berkurang berbanding terbalik dengan kuadrat jarak dari matahari. Jumlah energi matahari rata-rata yang jatuh pada puncak atmosfer tiap satuan luas (1 cm²) tegak lurus pada sinar matahari tiap menit, yaitu 2,0 kalori (Prawirowardoyo,1996:34). Radiasi yang dipancarkan matahari diterima permukaan bumi sangat kecil, tetapi bagi bumi, radiasi matahari merupakan energi utama proses-proses fisika atmosfer. Lama penyinaran matahari dalam periode harian adalah variasi dari bulan ke bulan berikutnya, hal ini juga banyak mempengaruhi intensitas total radiasi matahari seperti yang diketahui sbahwa radiasi matahari yang dipancarkan adalah berbentuk energi, dan energi ini digunakan untuk memanaskan bumi, oleh karena itu ukuran panas bumi merupakan ukuran besarnya energi matahari yang diterima permukaan bumi.

2.10. Daya Dan Efisiensi

Sebelum mengetahui daya sesaat yang dihasilkan kita harus mengetahui energi yang diterima, dimana energi tersebut adalah perkalian intensitas radiasi yang diterima dengan luasan dengan persamaan:

$$E = Ir \times A$$
(2.13), Literatur 19, hal.80 dimana :

Ir = Intensitas radiasi matahari (W/m²)

A = Luas permukaan (m²)

Sedangkan untuk besarnya daya sesaat yaitu perkalian tegangan dan arus yang dihasilkan oleh sel fotovoltaik dapat dihitung dengan rumus sebagai berikut:

Radiasi surya yang mengenai sel fotovoltaik dengan menggunakan alat pyranometer adalah dalam satuan mV sehingga harus dikonversikan menjadi W/m2, persamaan yang digunakan adalah :

$$Ir = ----x \ 1000 \ (W/m^2) \(2.15), Literatur 19, hal.80$$

Efisiensi yang terjadi pada sel surya adalah merupakan perbandingan daya yang dapat dibangkitkan oleh sel surya dengan energi input yang diperoleh dari sinar matahari. Efisiensi yang digunakan adalah efisiensi sesaat pada pengambilan data.

A = Luasan sel surya (m2)

P = Daya listrik (Watt)

Apabila pengguna menginginkan tegangan maupun arus yang lebih besar, maka panel solar cell dapat dirangkai secara seri atau paralel maupun kombinasi keduanya.Bila panel dirangkai seri maka tegangan yang naik tetapi bila dirangkai paralel maka arus yang naik.

BAB III

METODOLOGI PENELITIAN

3.1 Waktu Dan Lokasi Penelitian

Lokasi penelitian pengujian *Double Axis Solar Tracher* berlangsung pada tangggal 19-21 Mei 2022 berlangsung di lantai 2 gedung Work Shop dan pengembangan Universitas HKBP Nommensen Medan. Posisi koordinat lokasi penelitian terletak pada 3^o35'49.5"LU 98^o40'52.5" BT.

3.2 Gambar Double Axis

Gambar 3.1 : Double axis

Keterangan:

- 1. Photovoltaic 150Wp
- 2. Sensor
- 3. Controller
- 4. Tiang Penyangga
- 5. Axis
- 6. Landasan

Sistem tracking cahaya matahari adalah sebuah kesatuan komponen atau elemen yang digabungkan menjadi satu untuk mengontrol posisi alat sistem tracking dengan tujuan mengusahakan permukaan modul solar cell selalu menghadap arah datangnya cahaya matahari. Sistem tracking cahaya matahari ada beberapa jenis dan dapat diklasifikasikan berdasarkan beberapa kriteria (Tudorache, T., & Kreindler, L. (2010).). Klasifikasi pertama dapat dibuat berdasarkan jumlah sumbu putaran.

3.3. Cara Kerja Alat

Prinsip kerja panel surya single axis dan double axis solar tracker atau dalam keadaan dinamis dengan cara membuat solar cell mengikuti arah cahaya matahari dari pukul 08:00-17:00. Dengan pengambilan data interval 10 menit sekali. Langkah pertama yang dilakukan yaitu dengan memeriksa sambungan kabel dan memasang semua peralatan.Pasang sensor di bagian depan solar cell. Sambungkan kabel linier motor ke controller yang berfungsi untuk menggerakkan axis. Kemudian sensor yang sudah terpasang berfungsi untuk mendapatkan radiasi matahari yang kemudian di transfer ke controller. Kemudian controller mengukur seberapa besar daya yang masuk dan di lanjutkan ke laptop yang sudah terinstal GUI Solar tracker V2.1.exe melalui kabel output yang sudah tersambung antara controller dan laptop. Pada saat di GUI Solar tracker V2.1.exe hasil daya yang datang dari Controller diolah ke microsoft excel untuk mendapatkan hasil record data.

3.4. Spesifikasi Alat Yang Digunakan.

Rangkaian alat yang di gunakan dalam tugas akhir (skripsi) ini adalah :

1. Fotovoltaic 150 wp.

Spesifikasi:

Merk : SOLANA
Bahan : Monokristal

Model : SOL - M12150W

Maxsimum Power(Pmax) : 150 Wp Optimum Operating Voltage (Vm) : 18,1 V Optimum Operating Current (Im) : 8,29 A

Short circuit Voltage(Isc) : 8,69 V

Open circuit volt (Voc) : 22,1 V

Normar Operating Cell Temp(NOCT) : 47 oC

Max. System voltage : 600 V DC

Max. Series fuse Rating : 10A

Temperature cycling range : $-40 \,^{\circ}\text{C} \sim +85 \,^{\circ}\text{C}$

Modul Effiency : 15,1 %

Number of cell : 36 pcs of cell in series

Weight :11,5 kg

Modul Dimension :1480 mm \times 670 mm \times 35mm

2. Sensor

a. Tempat dudukan sensor LDR

Panjang : 60 mm

Lebar : 60 mm

Tinggi : 100 mm

b. Tempat dudukan sensor

Panjang : 50 mm

Lebar : 27 mm

Tinggi : 31 mm

3. Controller

Panjang : 98 mm

Lebar : 53 mm

Tinggi : 149 mm

4. Tiang penyangga

Panjang : 92 mm
Diameter : 20 mm

5. Tiang utama

Panjang : 40 mm

Lebar : 40 mm

Tinggi : 500 mm

6. Axis

Panjang : 920 mm

Lebar : 250mm

Diameter besi penggerak : 30 mm

Diameter besi atas : 20 mm

7. Landasan

Panjang : 620 mm

Lebar : 620 mm

Tinggi : 35 m

3.5. Alat teknis untuk mengukur

3.5.1. Kabel output

Kabel output berfungsi untuk menyambungkan *controller* dengan laptop pada saat pengambilan deta / *record* data.

Gambar 3.2 : Kabel output

3.5.2. Controller

Controller berfungsi mengendalikan kinerja alat yang dapat di kendalikan secara otomatis dan secara manual. Dan juga dapat mentrasfer data hasil *record* data ke laptop.

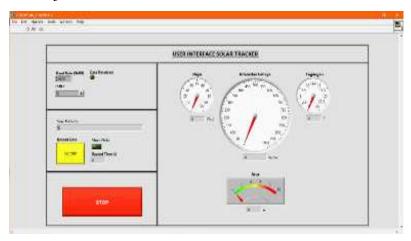
Gambar 3.3 : Controller.

3.5.3. Kabel linear motor

Kabel linear motor berfungsi untuk menyambung axis ke *controller* supaya axis bisa digerakan secara manual dan juga otomatis.

Gambar 3.4 : Kabel linear motor.

3.5.4. Power controller


Power *controller* berfungsi untuk menghidupkan atau mematikan *controller* dan kinerja alat.

Gambar 3.5: Power controller.

3.5.5. Software GUI Solar tracker V2.1.exe

Software GUI Solar Tracker V2.1.exe berfungsi sebagai aplikasi yang me-record data hasil pengujian dari controller ke laptop yang langsung di olah menjadi data exel.

Gambar 3.6 : Software GUI Solar Tracker V2.1.exe

3.5.6. Laptop atau PC

Laptop atau PC berfungsi untuk mengoprasikan *Software GUI Solar Tracker V2.1.exe* untuk me-record data dan juga untuk mengolah hasil record yang telah langsung otomatis ke exel.

Gambar 3.7 : Laptop atau PC.

3.5.7. Anemomete

Anemometer digunakan untuk mengukur kecepatan angin dan temperatur yang banyak di pakai dalam bidang metrologi dan geofisika atau stasiun prakiraan cuaca. Nama alat ini berasal dari kata Yunani *anemos* yang berarti angin.

Gambar 3.8: Anemometer.

Spesifikasi *Anemometer*:

Merk : Digital Anemometer GM818 Benetech.

Measure : Wind Speed & Temperature.

Wind speed range : 0 - 30 m/s.

Wind Temperature range : $-10 - 45^{\circ}$ C (14 – 113 $^{\circ}$ F).

Wind speed unit : m/s, Km/h, ft/min, Knots, mph.

Temperatur display : °C, °F.

Power supplay : 3V Cr2032 Battery.

Sistem *tracking* cahaya matahari adalah sebuah kesatuan komponen atau elemen yang digabungkan menjadi satu untuk mengontrol posisi alat sistem tracking dengan tujuan mengusahakan permukaan modul solar cell selalu menghadap arah datangnya cahaya matahari. Sistem *tracking* cahaya matahari ada beberapa jenis dan dapat diklasifikasikan berdasarkan beberapa kriteria (Tudorache, T., & Kreindler, L. (2010).). Klasifikasi pertama dapat dibuat berdasarkan jumlah sumbu putaran.

3.6. Cara Pengoprasian

3.6.1. Wiring (Pemasangan Kabel)

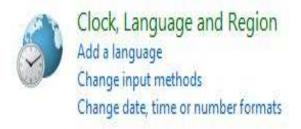
- 1. Pada kontroler terdapat beberapa terminal *block* yang harus di sambungkan dengan kabel kabel dari komponen yang ada di alat.
- 2. Untuk terminal *block IN* tersambung dengan kabel out put dari solar panel, Sambungkan kabel *ouput* dari *solar cell* ke *controller*. Pastikan kabel tidak terbalik (Kabel *output* positif terpasang pada terminal *IN* positif dan kabel *output* negatif terpasang pasa terminal *IN* negatif) jika pemasangan kabel terbalik akan merusak *controller*.
- 3. Untuk terminal *block OUT* dapat disambungkan dengan beban atau MPPT (*controler* untuk proses charging baterai).

Gambar 3.9: Terminal IN dan OUT Pada Controller

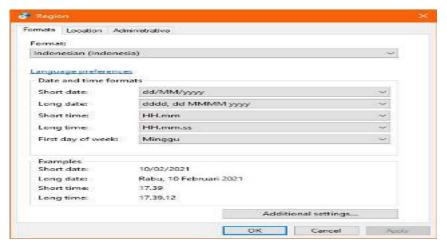
4. Kemudian Pasang kabel linear motor pada *controller*. Pasang Kabel linear motor sesuai dengan *axis* dari sensor.Untuk terminal *block* MOTOR X disambungkan dengan kabel motor linear pada *axis-x*, dan untuk terminal *block* MOTOR Y disambungkan dengan kabel motor linear pada *axis-y*.

3.10 . Terminal Motor X dan Y untuk Axis

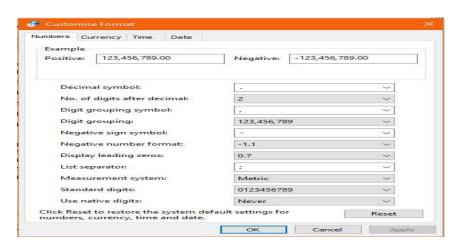
3.6.2. Cara install sofware GUI Solar Tracker V2.1.exe


- Proses instalasi GUI pada laptop atau komputer dilakukan sekali disaat awal. Untuk penggunaan GUI selanjutnya tidak perlu melakukan proses instalasi lagi.
- Untuk melakukan instalasi GUI perlu dilakukan instalasi file-file pendukung GUI antara lain Labview Runtime Engine 2017, NI VISA Runtime, dan Driver CH340.
- 3. Atur number format laptop atau komputer agar yang ter-*record* nantinya tidak rusak.

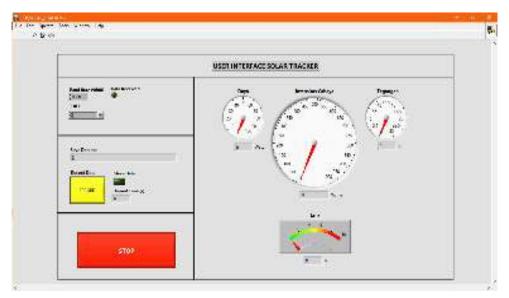
4. Buka control panel


Gambar 3.11: Control Panel

5. Kemudian klik Change date, time or number formats


Gambar 3.12 : Change date, time or number formats

6. Kemudian klik Additional settings

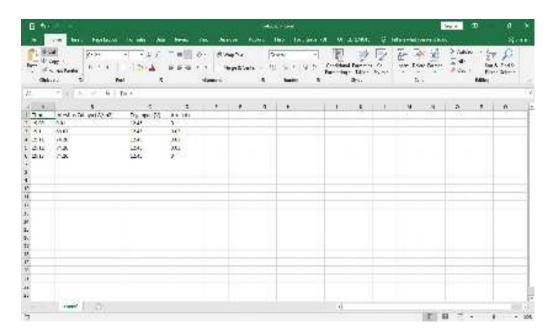

Gambar 3.13 : Region

7. Kemudian ubah parameter number format laptop atau komputer sesuai dengan gambar berikut:

Gambar 3.14 : *costumise format*

- 8. Setelah parameter terganti kemudian klik **OK.**
- 9. Setelah semua file pendukung terinstall. Buka file *GUI Solar TrackerV2.1.exe*.

Gambar 3.15: GUI Solar Tracker V2.1.exe


3.6.3 Cara Pengoperasian GUI dan Record Data.

- 1. Untuk pengoperasian GUI *solar tracker V2.1 exe*. Langkah pertama yaitu sambungkan Laptop/komputer dengan *controller*menggunakan kabel *output*/USB.
- 2. Kemudian buka file *GUI_Solar_Tracker_V2.1.exe*.

Gambar 3.16: GUI_Solar_Tracker_V2.1.exe

- 3. Pilih PORT dari *controller* yang terhubung dengan laptop atau komputer.
- 4. Kemudian klik *Run* wutuk mulai mengoperasikan GUI *solar tracker*.
 - 5. Untuk melakukan *record* data klik *RECORD* saat GUI beroperasi.
 - 6. Kemudian pilih lokasi penyimpanan file *data logger* dan set nama file *data logger*.
 - 7. Tombol *RECORD* akan berubah menjadi *RECORDING* dan berwarna hijau saat proses *Data logging* berlangsung.
 - 8. File *data logger* yang ter-record berupa file excel (.xlsx).
 - 9. Data akan ter-record setiap 1 menit.
 - 10. Berikut adalah hasil data yang ter-record.

Gambar3.17: Bentuk data yang ter-record.

- 11. Jika selesai melakukan record data klik tombol *RECORDING* hingga berubah menjadi warna kuning.
- 12. Kemudian untuk menghentikan GUI yaitu dengan cara menekan tombol *STOP*.

3.6.4 Setting Parameter Dari controller

1. Untuk mengatur parameter dari *Controller* dapat dilakukan melalui tombol yang ada pada *controller*.

Gambar 3.18: Tombol yang ada pada controller.

2. Ada 4 menu utama pada kontroler yaitu, *AUTO*, *MANUAL*, *MOTOR*, dan *SETTING*.

Gambar 3.19 : Menu pada controller

- 3. Untuk menjalanka secara otomatis yaitu dengan memilih menu *AUTO*, kemudian tekan tombol *enter*.
- 4. Untuk menjalankan secara manual yaitu dengan cara memilih menu *MANUAL*, kemudian pilih axis yang akan di gerakkan (X-*AXIS* atau Y-*AXIS*) dengan menggunakan tombol kursor + atau kursor -. Kemudian tekan tombol enter.

Gambar 3.20 : Manual X- axis dan Y-axis

- 5. Kemudian untuk menggerakkan motor kearah atas tekan tombol kursor +, dan untuk menggerakkan motor kearah bawah tekan tombol kursor -.
- 6. Untuk kembali ke menu sebelumnya yaitu dengan cara menekan tombol back.
- 7. Untuk menu *MODE* berfungsi untuk mengatur mode yang digunakan yaitu *single axis* atau *double axis*.

3.21 : Mode 1 axis dan 2 axis

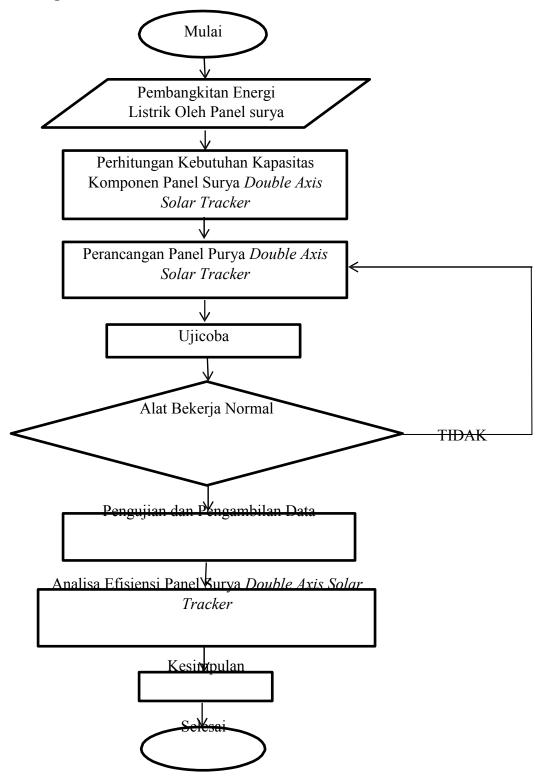
8. Untuk menu *SETTING* terdapad 2 menu untuk mengatur PID dan *SENSOR OFFSET*.

Gambar 3.22: Menu PID dan Sensor offset.

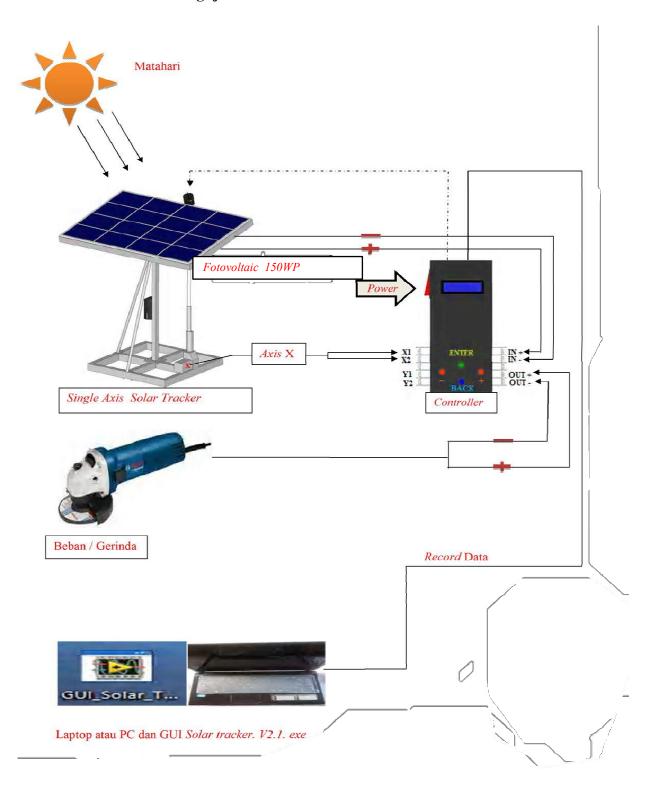
- 9. Untuk menu PID berfungsi untuk mengkonfigurasi konstanta kontrol PID pada solar tracker.
- 10. Untuk menu *SENSOR_OFFSET* berfungsi untuk mengkalibrasi sensor solar tracker yang berfungsi untuk mendeteksi posisi matahari

3.7. Prosedur Pengambilan Data

- 1. Lokasi pengujian di lantai 2 gedung Work Shop dan pengembangan Universitas HKBP Nommensen Medan.
- 2. Pengambilan data dimulai pukul 08:00 17:00.
- 3. Untuk menghidupkan tombol power on/off pada controller.
- 4. Kemudian pilih mode pada *controller* lalu pilih 2-AXIS
- 5. Setelah itu sambungkan kabel*output/*USB dari *controller* ke laptop.
- 6. Buka aplikasi GUI solar tracker V2.1 exe
- 7. Pilih Port dari *controller* yang terhubung dengan laptop atau komputer.
- 8. Kemudian klik run untuk memulai pengoperasian GUI *solar tracker V2.1 exe*.
- 9. Kemudian pilih menu AUTO pada controller.
- 10. Untuk melakukan *record* data klik *RECORD* Saat GUI beroperasi.
- 11. Kemudian pilih lokasi penyimpanan file data dan set nama file.


- 12. Tombol *record* akan berubah menjadi *RECORDING* dan berwarna hijau saat proses pengambilan data berlangsung.
- 13. Jika selesai melakukan *record* data klik tombol *RECORDING* hingga berubah menjadi warna kuning.
- 14. Kemudian untuk menghentikan GUI yaitu dengan cara menekan tombol *STOP*.

3.8. Gambar Double Axis solar tracker.


Gambar 3.23 : Gambar Double Axis solar tracker

3.9. Diagram Alir Double Axis Solar Tracker

Gambar 3.24 : Gambar Diagram alir Perancangan dan Pengujian *Double axis*Solar Tracker

3.10. Sketsa Pengujian

Gambar 3.25 : Sketsa Pengujian.

3.11. Scadulle Penelitian

No	Jenis Kegiatan	April			Mei				Juni				Agustus				September				
		Minggu ke-				Minggu ke-				Minggu ke-				Minggu ke-				Minggu ke-			
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Pengajuan Judul																				
2	Bimbingan BAB I-III																				
3	Pengajuan Sidang Proposal																				
4	Revisi Hasil Proposal																				
5	Persiapan Alat dan Bahan																				
6	Pembuatan Prototipe single axis solar tracker Photovoltai k 100 Wp																				
7	Pengujian																				
8	Seminar Hasil																				
9	Revisi Seminar Hasil																				
10	Sidang																				