BAB I

PENDAHULUAN

1.1 Latar Belakang

Dewasa ini, perubahan zaman semakin cepat dengan perkembangan yang begitu pesat. Akibatnya, percepatan aktivitas manusia merupakan keniscayaan yang tidak bisa ditolak. Hal inilah yang memicu munculnya teknologi-teknologi terbaru. Filosofinya tentu untuk membantu menyelesaikan tugas-tugas manusia dengan biaya dan tenaga seminimal mungkin. Salah satu teknologinya adalah teknologi 3D Printing. Saat ini, teknologi pencetakan 3D memainkan peran penting dalam pengembangan produk, pembuatan prototipe, dan manufaktur.

Dalam industri manufaktur, desain suatu produk menjadi bagian yang sangat penting mengingat begitu ketatnya persaingan dan cepatnya inovasi-inovasi yang dikeluarkan oleh produsen untuk mendapatkan pasar penjualan. Beberapa perusahaan manufaktur melakukan pengembangan produk, yaitu proses dimana konsep produk harus diterjemahkan dari gambar teknik menjadi produk phisik. Pembuatan produk fisik model pertama atau *prototype* dinamakan *prototyping*. *Prototyping* sangat penting karena merupakan makna terakhir dalam verifikasi bentuk, kesesuaian, dan fungsi produk.

Sebuah produk yang akan diproduksi secara massal memerlukan sebuah *prototype* awal sehingga bisa menilai apakah suatu produk desain telah memenuhi kriteria yang diinginkan dan siap untuk diproduksi secara massal. *Prototyping* akan sangat membantu menentukan proses produksi selanjutnya dan nilai investasi yang harus dikeluarkan. Untuk keperluan pembuatan prototyping awal tersebut, salah satu alternatifnya adalah menggunakan 3D printing.

Salah satu keuntungan penggunaan 3D printing untuk membuat *prototyping* adalah dapat membuat *prototype* dalam waktu yang singkat dan biaya yang relative murah dibandingkan pembuatan *prototype* secara konvensional. Printer 3D ini menjadi alat vital dalam dunia industri. Namun, untuk industri di Indonesia belum banyak menggunakan alat ini dikarenakan harga mesin tersebut relatif mahal untuk industri-industri berkembang di Indonesia dan kurangnya

pengetahuan tentang penggunaan 3D printer ini dikalangan masyarakat Indonesia. Oleh sebab itu pengetahuan dan keterampilan dalam menggunakan mesin printer 3D perlu lebih ditingkatkan lagi, begitu pula dengan karakteristik permesinan dengan mesin printer 3D perlu lebih dipahami. Salah satu karakteristik itu adalah

kecepatan dan temperatur 3D printing perlu didalami khususnya terkait kualitas

hasil printing akibat pengaruh karakteristik tersebut.

1.2 Tujuan

Adapun tujuan dari penelitian adalah:

1. Untuk mengetahui cara kerja mesin 3D Printing

2. Untuk mengetahui pengaruh Diameter dan Temperatur Nozzle terhadap

hasil printing.

3. Untuk mengetahui nilai kekerasan dan kekasaran permukaan pada hasil

printing.

1.3 Batasan Masalah

Karena luasnya permasalahan, penulis merasa perlu untuk membatasi masalah yang akan dibahas didalam laporan ini, mengingat keterbatasan waktu, tempat, kemampuan dan pengalaman. Adapun hal-hal yang akan dibahas dalam

desain dan manufaktur *prototype* ini adalah sebagai berikut :

1. Desain Kotak kubus dengan menggunakan software AUTOCAD

2. Proses manufaktur menggunakan 3D printer type FDM (Fused Deposition

Modelling)

3. Bahan baku Filamen: ABS 1.75mm

4. Kecepatan Printing: 60 - 120 mm/s

5. Temperatur Printing : 190° C - 240° C

6. Temperatur Nozzle : 250° C

7. Diameter Nozzle : 0,4.mm

: 0,3 mm

1.4 Manfaat Penelitian

Manfaat dari desain dan manufaktur *prototype* Kotak kubus 50mm x 50mm x 50mm ini adalah sebagai berikut :

1. Bagi Mahasiswa

- a. Sebagai suatu penerapan teori dan praktek yang telah diperoleh pada saat dibangku perkuliahan.
- b. Melatih mahasiswa dalam pendesainan produk atau komponen mesin dengan menggunakan software AUTOCAD.
- c. Menambah skil mahasiswa dalam penggunaan software AUTOCAD.
- d. Menambah pengetahuan mahasiswa dibidang teknologi 3D printer.
- e. Membeikan informasi baru yang bermanfaat untuk memperluas wawasan dan pengetahuan mahasiswa

2. Bagi Industri Manufaktur

Memperoleh solusi dalam pembuatan *prototype* awal tanpa membutuhkan biaya yang mahal.

 Bagi Prodi Teknik Mesin Universitas HKBP Nommensen Medan.
Sebagai bahan kajian di Prodi Teknik Mesin dalam matakuliah bidang Teknik Mesin.

BABII

TINJAUAN PUSTAKA

2.1 Desain

Desain adalah proses menterjemahkan ide-ide baru atau kebutuhan pasar menjadi informasi detail suatu produk yang dapat dibuat. Setiap langkah-langkah desain membutuhkan keputusan untuk menggunakan material apa digunakan dalam membuat produk tersebut dan proses pembuatannya. Umumnya pemilihan material itu ada didalam standard desain. Tetapi kadang-kadang suatu produk baru atau kelanjutan dari produk sebelumnya dapat dibuat atau disarankan untuk dibuat dengan material baru. Jumlah material yang tersedia untuk kebutuhan para *engineer* sangat banyak, antara 40.000-80.000 jenis. Walaupun adanya standarisasi telah mengurangi jumlah ini, namun munculnya material-material baru dengan sifat yang lebih baik bahkan menambah jumlah material. Mahendru, D.M., 2013, Review of Rapid Prototype Technology For The Future. Global Jurnal, Inc (USA), Vol 13.

2.2 Prototyping

Prototyping adalah contoh awal konsep sebagai bagian dari proses pengembangan produk. Prototype melayani berbagai tujuan baik dari sudut pandang bisnis maupun teknik.Bisnis menggunakan *prototype* mengumpulkan umpan balik pelanggan yang terperinci tentang masalah-masalah seperti estetika, ergonomik, dan tema. Serta untuk riset pemasaran dan analisis biaya. Prototyping digunakan oleh para insinyur untuk menyediakan data manufaktur dan perakitan, untuk menyelidiki integrasi sistem masalah dan untuk mengembangkan analisis dan strategi pengujian. dalam beberapa kasus, prototyping juga digunakan di fase generasi konsep dari proses desain untuk membantu desainer untuk memperluas atau mengontrak himpunan konsep yang mungkin. Jelas prototyping adalah bagian penting dari sebagian besar proses desain. Mahendru, D.M., 2013, Review of Rapid Prototype Technology For The Future. Global Jurnal, Inc (USA), Vol 13.

2.3 Rapid Prototyping

Rapid Prototyping (RP) dapat didefenisikan sebagai metode-metode yang digunakan untuk membuat model berskala (prototype) dari mulai bagian suatu produk (part) ataupun rakitan produk (assembly) secara cepat dengan menggunakan data Computer-Aided Design (CAD) tigadimensi. Rapid Prototyping memungkinkan visualisasi suatu gambar 3D (tiga dimensi) menjadi benda tiga dimensi asli yang mempunyai volume. Selain itu produk-produk rapid ptototyping juga dapat digunakan untuk menguji part tertentu.

Paket perangkat lunak mengiris model CAD menjadi jumlah lapisan tipis =0,1 mm tebal yang mungkin dibangun satu diatas yang lain. Ini adalah "Proses Aditif'dari pada kebanyakan proses pemesinan "Proses Subtraktif".

Ada 5 teknik (metode) rapid prototyping, yaitu:

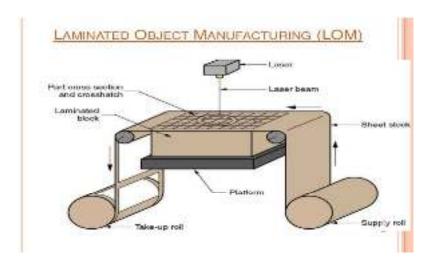
a. Stereo Lithography (SLA)

Dipatenkan pada tahun 1986, SLA memulai revolusi rapid prototyping. SLA adalah proses pembuatan aditif dalam bentuknya yang paling umum. Dimana bekerja dengan memfokuskan laser ultraviolet (UV) photopolymer. Dengan bantuan pada tong resin Computer-Aided Manufacturing atau Computer-Aided Design (CAM / CAD). Laser UV digunakan untuk menggambar desain atau bentuk yang diprogram sebelumnya pada permukaan tong photopolymer. Photopolymers sensitif terhadap sinar ultraviolet, sehingga resin secara fotokimia dipadatkan dan membentuk satu lapisan objek 3D yang diinginkan. Kemudian, platform build menurunkan satu lapisan dan blade mengulangi bagian atas tangki dengan resin. Proses ini diulang untuk setiap lapisan desain sampai objek 3D selesai. Bagian yang sudah selesai harus dicuci dengan pelarut untuk membersihkan resin basah dari permukaannya.

Dimungkinkan juga untuk mencetak objek "bottom up" dengan menggunakan tong dengan dasar transparan dan memfokuskan UV atau laser polimerisasi biru ke atas melalui bagian bawah tong. Mesin stereolithografi

terbalik memulai cetakan dengan menurunkan *platform build* untuk menyentuh bagian bawah tong yang diisi resin, kemudian bergerak ke atas ketinggian satu lapisan. Laser UV kemudian menulis lapisan paling bawah dari bagian yang diinginkan melalui bagian bawah tong transparan. Kemudian tong itu "diguncang", melenturkan dan mengupas bagian bawah tong jauh dari *photopolymer* yang mengeras; bahan keras melepaskan dari dasar tong dan tetap melekat pada *platform build* meningkat, dan *photopolymer* cair baru mengalir dari tepi bagian yang dibangun sebagian. Laser UV kemudian menulis lapisan kedua dari bawah dan mengulangi prosesnya. Keuntungan dari mode *bottom up* ini adalah bahwa volume *build* dapat jauh lebih besar daripada tong itu sendiri, dan hanya cukup *photopolymer* yang diperlukan untuk menjaga bagian bawah *build* terus-menerus penuh dengan *photopolymer*. Pendekatan ini tipikal untuk printer SLA desktop, sedangkan pendekatan sisi kanan lebih sering terjadi pada sistem industri.

SLA membutuhkan penggunaan struktur pendukung yang menempel pada platform elevator untuk mencegah defleksi akibat gravitasi, menahan tekanan lateral dari pisau yang diisi resin, atau mempertahankan bagian yang baru dibuat selama "vat rocking" dari pencetakan bottom up. Dukungan biasanya dibuat secara otomatis selama persiapan model CAD dan juga dapat dilakukan secara manual. Dalam situasi apa pun, dukungan harus dihilangkan secara manual setelah pencetakan.

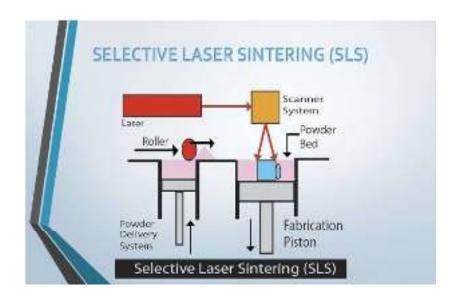

Bentuk stereolithografi lainnya membangun setiap lapisan dengan penutup LCD, atau menggunakan proyektor DLP.

Gambar 2.1 Stereo Lithography (SLA)

b. Laminated Object Manufacture (LOM)

Laminated object manufacturing (LOM) adalah sistem rapid prototyping yang dikembangkan oleh Helisys Inc (Cubic Technologies sekarang merupakan organisasi penerus Helisys). Di dalamnya, lapisan kertas berlapis perekat, plastik, atau laminasi logam secara berturut-turut direkatkan bersama dan dipotong menjadi bentuk dengan pisau atau pemotong laser. Objek yang dicetak dengan teknik ini dapat dimodifikasi dengan pemesinan atau pengeboran setelah pencetakan. Resolusi lapisan tipikal untuk proses ini ditentukan oleh bahan baku material dan biasanya memiliki ketebalan mulai dari satu hingga beberapa lembar kertas fotokopi.

Gambar 2.2 Laminated Object Manufacturing (LOM)


c. Selective Laser Sintering (SLS)

Selective laser sintering (SLS) adalah teknik pembuatan aditif manufaktur (AM) yang menggunakan laser sebagai sumber daya untuk menyinter bahan bubuk (biasanya nilon atau poliamida), mengarahkan laser secara otomatis pada titik-titik di ruang yang ditentukan oleh model 3D, mengikat bahan bersama-sama untuk menciptakan struktur yang solid. Ini mirip dengan Selective Laser Melting (SLM); keduanya adalah contoh dari konsep yang sama tetapi berbeda dalam detail teknis. Selective laser melting (SLM) menggunakan konsep yang sebanding, tetapi dalam SLM bahan

sepenuhnya meleleh daripada disinter, memungkinkan sifat yang berbeda (struktur kristal, porositas, dan sebagainya). SLS (serta teknik AM lainnya yang disebutkan) adalah teknologi yang relatif baru yang sejauh ini terutama digunakan untuk pembuatan prototipe cepat dan untuk produksi komponen komponen dalam volume rendah. Peran produksi berkembang seiring dengan komersialisasi teknologi AM yang meningkat.

Teknologi lapisan manufaktur tambahan, SLS melibatkan penggunaan laser daya tinggi (misalnya, laser karbon dioksida) untuk memadukan partikel kecil plastik, logam, keramik, atau serbuk kaca menjadi massa yang memiliki bentuk tiga dimensi yang diinginkan. Laser selektif memadukan bahan bubuk dengan memindai penampang yang dihasilkan dari deskripsi digital 3-D bagian (misalnya dari file CAD atau data pemindaian) pada permukaan bed. Setelah setiap penampang dipindai, alas bedak diturunkan dengan satu ketebalan lapisan, lapisan material baru diaplikasikan di atas, dan proses diulangi sampai bagian tersebut selesai.

Berbeda dengan beberapa proses pembuatan aditif lainnya, seperti stereolithography (SLA), Fused Deposition Modelling (FDM), yang paling sering membutuhkan struktur pendukung khusus untuk membuat desain yang menggantung. SLS tidak memerlukan pengumpan terpisah untuk bahan pendukung karena bagian yang sedang dibangun dikelilingi oleh bubuk yang tidak disintesis setiap saat. Ini memungkinkan untuk konstruksi geometri yang sebelumnya tidak mungkin, juga karena ruang mesin selalu diisi dengan bahan serbuk. Pembuatan beberapa bagian memiliki dampak yang jauh lebih rendah pada keseluruhan kesulitan dan harga desain karena melalui teknik yang dikenal sebagai "bagian bersarang", beberapa bagian dapat diposisikan agar sesuai dengan batas-batas dari mesin. Satu aspek desain yang harus diperhatikan adalah bahwa dengan SLS adalah tidak mungkin untuk membuat elemen berongga tetapi tertutup sepenuhnya. Ini karena bubuk yang tidak disintesis di dalam elemen tidak dapat dikeringkan.

Gambar 2.3 Selective Laser Sintering (SLS)

d. Fused Deposition Modeling (FDM)

Fused filament fabrikasi (FFF), juga dikenal dengan istilah Fused Deposition Modeling (FDM), yang kadang-kadang juga disebut fabrikasi bentuk bebas filamen, adalah proses pencetakan 3D yang menggunakan filamen terus menerus dari bahan termoplastik. Filament diumpankan dari koil besar melalui kepala, mesin pengekstrusi printer yang dipanaskan, dan disimpan pada pekerjaan yang sedang berkembang. Print head dipindahkan di bawah kendali komputer untuk menentukan bentuk cetakan. Biasanya kepala bergerak dalam dua dimensi untuk menyimpan satu bidang horizontal, atau lapisan, pada satu waktu; pekerjaan atau print head kemudian dipindahkan secara vertikal dengan jumlah kecil untuk memulai layer baru. Kecepatan kepala exstruder juga dapat dikontrol untuk berhenti dan memulai pengendapan dan membentuk bidang yang terputus tanpa merangkai atau menggiring bola antar bagian. "Pembuatan filamen menyatu" diciptakan oleh anggota proyek RepRap untuk memberikan frasa yang secara hukum tidak akan dibatasi dalam penggunaannya, diberikan merek dagang yang mencakup "pemodelan deposisi peleburan".

Pencetakan filamen yang menyatu sekarang merupakan proses yang paling populer (berdasarkan jumlah mesin) untuk pencetakan 3D tingkat hobi.

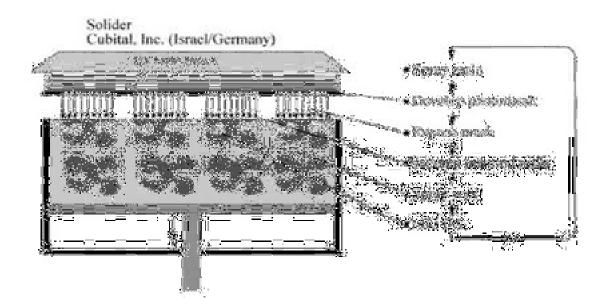
Teknik-teknik lain seperti *photopolymerisation* dan *sintering* bubuk mungkin menawarkan hasil yang lebih baik, tetapi mereka jauh lebih mahal.

Kepala printer 3D atau *extruder printer 3D* adalah bagian dalam pembuatan bahan tambahan ekstrusi yang bertanggung jawab atas peleburan bahan baku dan membentuknya menjadi profil berkelanjutan. Berbagai macam bahan filamen diekstrusi, termasuk termoplastik seperti *acrylonitrile butadiene styrene* (ABS), *polylactic acid* (PLA), *high-impact polystyrene* (HIPS), termoplastik polyurethane (TPU) dan poliamida alifatik (nilon).

Pencetakan 3D, juga disebut sebagai *aditif manufakturing* (AM), melibatkan pembuatan bagian dengan menyimpan bahan lapis demi lapis. Ada beragam teknologi AM yang berbeda yang dapat melakukan ini, termasuk ekstrusi bahan, pengikat binder, pengaliran material, dan pengendapan energi terarah. Proses ini memiliki berbagai jenis pengekstrusi dan mengusir bahan yang berbeda untuk mencapai produk akhir.

Gambar 2.4 Fused Deposition Modeling (FDM)

e. Solid Ground Curing (SGC)


Solid ground curing (SGC) adalah teknologi aditif berbasis foto polimer (atau pencetakan 3D) yang digunakan untuk memproduksi model, prototipe, pola, dan bagian produksi, di mana produksi geometri lapisan dilakukan dengan cara dari lampu UV berdaya tinggi melalui topeng. Karena dasar dari curing tanah padat adalah paparan setiap lapisan model dengan

menggunakan lampu melalui masker, waktu pemrosesan untuk pembuatan lapisan tidak tergantung pada kompleksitas lapisan. SGC dikembangkan dan dikomersialkan oleh Cubital Ltd. Israel pada tahun 1986 dengan nama alternatif Sistem Solider. Walaupun metode ini menawarkan akurasi yang baik dan tingkat fabrikasi yang sangat tinggi, metode ini menderita karena akuisisi tinggi dan biaya pengoperasian karena kompleksitas sistem. Hal ini menyebabkan penerimaan pasar yang buruk. Sementara perusahaan masih ada, sistem tidak lagi dijual. Namun demikian, ini masih merupakan contoh menarik dari banyak teknologi selain stereolithografi, proses *prototyping* cepat yang telah digunakan sebelumnya yang juga menggunakan bahan polimer foto. Meskipun Objet Geometries Ltd. dari Israel mempertahankan hak kekayaan intelektual dari proses tersebut setelah penutupan Cubital Ltd. pada tahun 2002, teknologinya tidak lagi diproduksi.

Curing tanah padat menggunakan proses umum pengerasan photopolymers dengan pencahayaan lengkap dan pengerasan seluruh permukaan, menggunakan masker yang disiapkan khusus. Dalam proses SGC, setiap lapisan prototipe disembuhkan dengan mengekspos ke lampu ultra violet (UV) alih-alih dengan pemindaian laser. Sehingga, setiap bagian dalam lapisan disembuhkan secara simultan dan tidak memerlukan proses pascacuring. Proses ini berisi langkah-langkah berikut.

- 1) Bagian melintang dari setiap lapisan irisan dihitung berdasarkan model geometris bagian dan ketebalan lapisan yang diinginkan.
- 2) Topeng optik dihasilkan sesuai dengan setiap penampang.
- 3) Setelah *leveling*, *platform* ditutupi dengan lapisan tipis *photopolymer* cair.
- 4) Topeng yang sesuai dengan lapisan saat ini diposisikan di atas permukaan resin cair, dan resin terkena lampu UV daya tinggi.
- 5) Cairan sisa dikeluarkan dari benda kerja oleh penghapus aerodinamis.
- 6) Lapisan lilin leleh tersebar di benda kerja untuk mengisi kekosongan. Lilin kemudian dipadatkan dengan mengoleskan pelat dingin.

- 7) Permukaan lapisan dipangkas dengan ketebalan yang diinginkan oleh *disk milling*.
- 8) Benda kerja saat ini ditutupi dengan lapisan tipis polimer cair dan langkah 4 hingga diulang untuk setiap lapisan atas berikutnya sampai lapisan paling atas telah diproses.
- 9) Lilin dilelehkan setelah selesai bagian.

Gambar 2.5 Solid Ground Curing (SGC)

2.4 3D Printer

Proses 3D printer membangun objek tiga dimensi dari model *computer-aided design* (CAD), biasanya dengan menambahkan bahan lapis demi lapis secara berturut-turut, itulah sebabnya ia juga disebut *aditif manufakturing*, tidak seperti permesinan konvensional, pengecoran dan penempaan proses, dimana bahan dihilangkan dari persediaan barang (subtraktif manufaktur) atau dituangkan ke dalam cetakan dan dibentuk dengan cara mati, tekan dan palu. Istilah "pencetakan 3D" mencakup berbagai proses di mana bahan bergabung atau dipadatkan di bawah kendali komputer untuk membuat objek tiga dimensi, dengan bahan yang ditambahkan bersama-sama (seperti molekul cair atau butiran serbuk disatukan bersama-sama), biasanya lapis demi lapisan. Pada 1990-an, teknik pencetakan 3D dianggap hanya cocok untuk produksi *prototipe* fungsional

atau estetika dan istilah yang lebih tepat untuk itu adalah *rapid prototyping*. Pada 2019 presisi, pengulangan dan jangkauan material telah meningkat ke titik bahwa beberapa proses pencetakan 3D dianggap layak sebagai teknologi produksi industri, di mana istilah *aditif manufakturing* dapat digunakan secara sinonim dengan "pencetakan 3D". Salah satu keuntungan utama dari pencetakan 3D adalah kemampuan untuk menghasilkan bentuk atau geometri yang sangat kompleks, dan prasyarat untuk memproduksi bagian cetak 3D adalah model 3D digital atau *file* CAD. Proses pencetakan 3D yang paling umum digunakan (46% pada 2018) adalah teknik ekstrusi bahan yang disebut *fused deposition modeling* (FDM).

Istilah *additive manufacturing* (AM) mendapatkan popularitas di tahun 2000-an, yang terinspirasi oleh tema bahan yang ditambahkan bersama-sama (dengan berbagai cara). Sebaliknya, istilah manufaktur subtraktif muncul sebagai *retronym* untuk keluarga besar proses pemesinan dengan penghapusan material sebagai tema umum mereka. Istilah pencetakan 3D masih hanya mengacu pada teknologi polimer di sebagian besar pikiran, dan istilah AM lebih cenderung digunakan dalam pengerjaan logam dan penggunaan konteks produksi bagian akhir daripada di antara penggemar polimer, *ink-jet, atau stereo litografi*.

Pada awal 2010-an, istilah pencetakan 3D dan manufaktur aditif berkembang di mana mereka menjadi istilah alternatif untuk teknologi aditif, yang digunakan dalam bahasa populer oleh komunitas pembuat konsumen dan media, dan yang lainnya digunakan secara lebih formal oleh pengguna akhir industri bagian produsen, produsen mesin, dan organisasi standar teknis global. Sampai saat ini, istilah pencetakan 3D telah dikaitkan dengan mesin dengan harga rendah atau kemampuan. Pencetakan 3D dan manufaktur aditif mencerminkan bahwa teknologi berbagi tema penambahan bahan atau bergabung di seluruh amplop kerja 3D di bawah kendali otomatis. Peter Zelinski, pemimpin redaksi majalah Additive Manufacturing, menunjukkan pada tahun 2017 bahwa istilah tersebut masih sering identik dalam penggunaan biasa tetapi beberapa pakar industri manufaktur berusaha untuk membuat perbedaan di mana Additive Manufacturing terdiri dari pencetakan 3D dan lainnya teknologi atau aspek lain dari proses manufaktur.

Istilah "3D printer" awalnya mengacu pada proses yang menyimpan bahan pengikat ke *bed powder* dengan kepala printer *inkjet* lapis demi lapis. Baru-baru ini, vernakular populer telah mulai menggunakan istilah ini untuk mencakup berbagai teknik pembuatan aditif yang lebih luas seperti pembuatan aditif berkas elektron dan peleburan laser selektif. Amerika Serikat dan standar teknis global menggunakan istilah manufaktur aditif resmi untuk pengertian yang lebih luas ini.

Model 3D printer dapat dibuat dengan paket *computer-aided design* (CAD), melalui pemindai 3D, atau dengan kamera digital biasa dan perangkat lunak fotogrametri. Model cetakan 3D yang dibuat dengan CAD menghasilkan pengurangan kesalahan dan dapat diperbaiki sebelum dicetak, memungkinkan verifikasi dalam desain objek sebelum dicetak. Proses pemodelan manual mempersiapkan data geometris untuk grafik komputer 3D mirip dengan seni plastik seperti patung. Pemindaian 3D adalah proses mengumpulkan data digital pada bentuk dan tampilan objek nyata, membuat model digital berdasarkan itu.

Model CAD dapat disimpan dalam format file stereolithografi (STL), format file CAD de facto untuk pembuatan aditif yang menyimpan data berdasarkan triangulasi permukaan model CAD. STL tidak dirancang untuk pembuatan aditif karena menghasilkan ukuran file yang besar dari bagian topologi yang dioptimalkan dan struktur kisi karena banyaknya permukaan yang terlibat. Format file CAD yang lebih baru, format *Aditif Manufacture file* (AMF) diperkenalkan pada 2011 untuk menyelesaikan masalah ini. Ia menyimpan informasi menggunakan triangulasi lengkung.

Gambar 2.6 Printer 3D

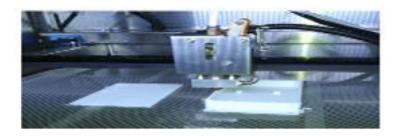
2.4.1 Mekanisme pada mesin Printer 3D

1. Model Objek 3D

Model objek 3D dapat dibuat dengan menggunakan software khusus untuk model desain 3D yang printernya mendukung contohnya solidwork, catia, autocad.

Gambar 2.7 Model Objek 3D

Proses pemodelan objek 3D disimpan (*save*) dalam format STL. Semua aktivitas 3D Printing kebanyakan akan menggunakan STL file. STL file merupakan format 3D modelling yang membuat 3D Printer melakukan tugasnya dengan nyaman dan efektif untuk memotong objek dari *layer* pada saat print. Setelah disimpan dalam format STL, maka proses selanjutnya adalah *setting parameter print*. *Setting parameter print* dapat dilakukan menggunakan beberapa software *open source* yang terdapat di internet, salah satunya ialah software Cura.


Gambar 2.8 Setting Parameter Print dengan menggunakan software Cura

Pada tahap ini parameter print dapat ditentukan, seperti: ketebalan lapisan, ketebalan dinding, ketebalan alas bawah dan atas, kepadatan lapisan, kecepatan print, temperatur print, jenis support yang digunakan, diameter filament dan aliran filament. Output yang dihasilkan dari software Cura berupa file G-CODE yang kemudian dapat diproses oleh 3D printer.

2. Proses Printing

Apabila desainnya sudah dibuat anda bisa langsung print di mesin printer 3D. Kemudian proses pencetakan ini tergantung dari besar dan ukuran model. Proses printing menggunakan prinsip Additive Layer dengan rangkaian proses mesin membaca rancangan 3D dan mulai menyusun lapisan secara berturut turut untuk membangun model virtual

digabungkan secara otomatis untuk membentuk susunan lengkap yang utuh.

Gambar 2.9 Proses Printing

3. Finishing

Pada tahap ini anda dapat menyempurnakan bagian bagian kompleks yang bisa jadi disebabkan oleh over sized atau ukuran yang berbeda dari yang diinginkan. Teknik tambahan untuk menyempurnakan proses ini dapat pula menggunakan teknik multiple material atau kombinasi warna.

Gambar 2.10 Hasil print 3D printer

2.5 Format File STL Dalam Pencetakan 3 Dimensi

STL file adalah format file yang biasa digunakan untuk file dari objek tigadimensi dan digunakan untuk menyimpan data dari suatu model 3D. Format file STL ini hanya mendeskrip sikangeometri dari permukaan sebuah objek tigadimensi tanpa representasi mengenai warna, teksture atau atribut lain dari sebuah objek 3 dimensi. Format file STL biasanya dihasilkan oleh sebuah program CAD (*Computer-Aided Design*) dan merupakan hasil akhir dari suatu proses 3D *modeling*.

Format file STL biasa digunakan untuk pencetakan 3D, ketika digunakan dengan sebuah program 3D *slicer*, memungkinkannya sebagai jembatan komunikasi antara computer dengan perangkat printer3D. Format file STL ini telah banyak diadopsi dan disupport oleh banyak software CAD dan saat ini telah banyak digunakan untuk keperluan *rapid prototyping*, pencetakan 3D dan manufaktur. Termasuk para *hobiest* dan professional telah banyak yang menggunakannya.

2.6 Jenis-jenis filament

a) ABS (Acrylonitrile Butadiene Styrene)

ABS merupakan bahan yang paling umum digunakan oleh mesin cetak 3 dimensi. Material ini adalah bahan yang digunakan untuk membuat blok-blok lego. ABS cenderung mudah digunakan untuk mencetak namun memiliki kecenderungan untuk menyusutdalam proses pendinginannya sehingga sedikit mempengaruhi hasil cetak. Ketika menggunakan ABS, alas cetak harus dipanaskan dan diberiperekat. Bahan ini relative aman bagi manusia namun sedikit menghasilkan bau plastic ketika ABS dipanaskan. Material inibersifat thermoplastic yang memiliki pengertian material akan melunak dan mudah dibentuk jika dipanaskan hingga pada suhu tertentu namun akan menjadikeras setelah di dinginkan. Jenis material ini sangat tahan terhadap suhu tinggi dan juga cuaca yang membuatnya di gemari untuk dijadikan sebagai komponen pembentuk objek/benda yang real di dunia nyata.

Gambar 2.11 Filament ABS (Acrylonitrile Butadine Styrene)

b) PLA (Poly Lactic Acid)

PLA merupakan salah satu jenis plastic polimer yang terbuat dari bahan-bahan yang dapat terurai, seperti tepung jagung, tepung tapioka, atau olahan tebu. Karena terbuat dari bahan yang mudah terurai, PLA ramah lingkungan. Hal inilah yang membuat bahan ini semakin banyak mendapatkan popularitas. PLA dapat menghasilkan cetakan yang kuat dan sangat rapi.

Gambar 2.12 Filament Pla (Polyactic Acid)

c) HIPS (*High Impact* Polystyrene)

Sangat mirip dengan ABS perbedaan utama adalah bahwa HIPS dapat larut dalam larutan Limonene. Dapat juga untuk mencetak object 3D yang komplek dengan kombinasi 3D filament lain, dimana HIPS sebagai bahan pendukung/support yang kemudian dapat dengan mudah dihilangkan dengan menempatkan hasil 3D Print di larutan D-Limonene oil. Ini adalah alternatif yang fantastis untuk pembersihan bahan pendukung/support.

d) PVA (Polyvinyl Alkohol)

Merupakan 3D filament printer yang larut dalam air. Fitur ini membuat filamen PVA sangat cocok sebagai bahan pendukung/support untuk 3D Print PLA yang kompleks.

e) Flexible PLA

Tidak berbahaya / beracun dan merupakan 3D Filament yang menghasilkan 3D *print* yang *flexible* dan elastis.

f) PETG (Glycol-modified PET)

PETG *filament* (Glycol-modified PET; Co polyesters) adalah senyawa plastik yang satu famili dengan PET (Polyethylene terephthalate). Memiliki pengabungan keungulan dari senyawa plastik ABS dan PLA, serta memiliki warna yang bening/transparan dan kilap.

g) Color Change By UV

Color Change By UV filament merupakan 3D printer filament yang akan berubah warnanya bila terkena Sinar UV atau Sinar Matahari.

h) Color Change By Temperature

Color Change By Temperature filament merupakan 3D printer filament yang akan berubah warnanya bila terpapar / kontak dengan panas (dicelup air panas).

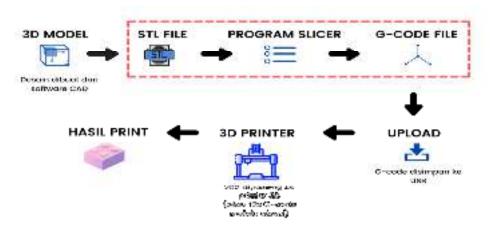
i) Wood

Wood filament adalah 3D printer filament yang memiliki kareteristik warna dan hasil seperti kayu.

j) Bronze

Bronze filament adalah 3D printer filament yang memiliki kareteristik warna & hasil mirip Bronze.

2.7 Software Autocad


Sebagai software CAD,Autocad dipercaya sebagai perangkat lunak untuk membantu proses desain suatu benda atau bangunan dengan mudah. Di Indonesia sendiri terdapat banyak perusahaan manufaktur yang mengimplementasikan perangkat lunak Autocad. Keunggulan Autocad dari software CAD lain adalah mampu menyediakan sketsa 2D yang dapat diupgrade menjadi bentuk 3D. Selain itu pemakaiannya pun mudah karena memang dirancang khusus untuk mendesai benda sederhana maupun yang rumit sekali pun. Inilah yang membuat Autocad menjadi populer dan menggeser ketenaran software CAD lainnya.

Autocad dipakai banyak orang untuk membantu desain benda atau bangunan sederhana hingga yang kompleks. Autocad banyak digunakan untuk

merancang roda gigi, mesin mobil, *casing* ponsel dan lain-lain. Fitur yang tersedia dalam Autocad lebih *easy-to-use* dibanding dengan aplikasi CAD lainnya. Bagi mahasiswa yang sedang menempuh pendidikan di jurusan Tehnik Sipil, Tehnik Industri dan Tehnik Mesin sangat disarankan untuk mempelajari Autocad. Karena Autocad sangat sesuai dengan kebutuhan mahasiswa yang mengambil tiga jurusan tersebut dan yang paling utama proses penggunaan Autocad lebih cepat dibanding vendor-vendor software CAD lain yang lebih dulu hadir. Juga dapat melakukan simulasi pada desain yang telah buat dengan Autocad. Analisi kekuatan desain juga dapat dilakukan secara sederhana dengan Autocad. Dan yang paling penting, dapat membuat desain animasi menggunakan fitur yang telah disediakan Autocad.

2.8 Software Slicer

Slicer atau dalam bahasa Indonesia diterjemahkan menjadi perangkat lunak pemotong, adalah software komputer yang menjadi inti dari pemrosesan gambar menjadi perintah pergerakan mesin. Software slicer akan menerima file berbentuk STL dan OBJ (atau bisa disebut *file mesh* dengan koordinat titik spesifik) dan diproses sehingga menghasilkan perintah mesin berupa *G code*. Secara umum *G code* ini adalah kode yang digunakan untuk pergerakan 3D printer hingga CNC.

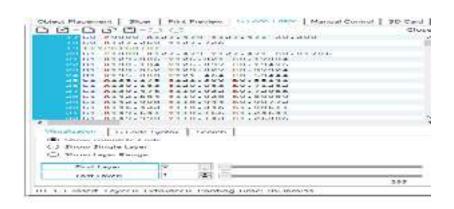
Gambar 2.13 Tahap slicing sampai tahap printing

Awalnya *slicer* akan merubah objek menjadi banyak tumpukan dari *layer* atau bagian, diikuti dengan perintah pergerakan dari *printer extruder* pada setiap layernya. I juga bisa memerintahkan dan mengontrol suhu *nozzle* dan suhu *bed*,

pergerakan tarik ulur pada *extruder*. File ini dimasukkan semua di G code dan G code ini bisa dibaca oleh 3D printer.

Jadi pada dasarnya *slicer* adalah software control 3D printer. 3D printer hanya menerima kode /perintah dari *slicer* dan menterjemahkannya di pergerakan dan peningkatan suhu. 3D printer tidak mampu langsung menerima file 3D dalam bentuk STL, OBJ ataupun Dwg.

Slicer 3D printer yang ada di pasaran diantaranya:


- 1. Ultimaker Cura
- 2. Simplify3D
- 3. Repetier Host

2.9 Program G-Code dan M- Code

2.9.1 G-Code

G-code adalah salah satu nama yang umum dalam bahasa pemrograman Numerical Control. Ini digunakan terutama dalam pembuatan dengan bantuan komputer untuk mengontrol peralatan mesin otomatis seperti CNC dan printer 3D. Setelah gambar yang dibuat di simpan dalam format STL serta selesai diedit di aplikasi slicing, maka cukup *slice* dan simpan file dengan format G-code yang akan digunakan untuk printer.

G-code adalah bahasa pemrograman printer 3D. Semua parameter dan pengaturan lain yang telah diubah akan dibaca G-code. Dengan menggunakan G-code, komputer memberi tahu dan memerintahkan printer kapan, di mana, bagaimana memindahkan, dan berapa banyak yang harus diekstrusi selama seluruh proses cetak. File STL akan diubah ke titik demi titik dan printer akan melewati titik-titik ini. G-Code adalah karya yang akan diterjemahkan oleh printer 3D.

Gambar 2.14 G-code

2.9.2 M-Code

M-code juga merupakan salah satu nama yang umum dalam bahasa pemrograman Numerical Control. M-code banyak digunakan dalam CNC. Selain itu, M-code juga ada digunakan dalam printer 3D.

2.9.3 Istilah-Istilah G-code dan M-code

1. G-code

Tabel 2.1 Istilah-istilah G-code

No.	Istilah	Penjelasan
1	G00	Pengeposisian bebas
2	G01	Interpolasi lurus
3	G02	Interpolasi melingkar searah jarum jam (CW)
4	G03	Interpolasi melingkar berlawanan arah jarum jam
5	G04	Program berhenti pada waktu tertentu
6	G10	Data program dapat di-input
7	G15	Pembatalan perintah koordinat polar
8	G16	Perintah koordinat polar
9	G17	Interpolasi helical
10	G20	Konversi satuan inchi (british)
11	G21	Konversi satuan mm (metric)
12	G28	Pengembalian posisi referensi
13	G31	Perintah skip (melangkahi)
14	G33	Pembuatan ulir (<i>Threading cutting</i>)
15	G40	Cancel kompensasi cutter
16	G43, G44	Kompensasi panjang tool positif (G43), Negatif
17	G45	Menaikkan offset tool
18	G46	Menurunkan offset tool
19	G47	Menaikkan ganda offset tool
20	G48	Menurunkan ganda offset tool
21	G49	Pembatalan kompensasi panjang tool
22	G52	Penyatuan system koordinat local
23	G54, G55, G56,	Sistem koordinat workpiece
24	G60	Pengeposisian arah tunggal
25	G63	Pengerjalaan tapping (ulir dalam)
26	G64	Pengerjaan pemotongan
27	G60	Menghitung putaran tapping
28	G74	Pengerjaan proses canned cycle
29	G76	Pembatalan pengerjaan siklus
30	G80	Pengoperasian eksernal atau putaran drilling
31	G81	Keliling counter boring
32	G82	Peck drilling cycle

33	G83	Pengerjaan keliling Tapping
34	G84	Pengerjaan keliling boring
35	G85	Perintah system koordinat absolute
36	G90	Perintah system koordinat incremental
37	G91	Penentuan asutan pemakanan dalam (inchi/menit)
38	G94	Kecepatan potong permukaan konstan
39	G95	Penentuan asutan pemakanan dalam (inchi/putaran)
40	G96	Kembali ke titik initial di sebuah siklus
41	G99	Kembali ke titik R di sebuah siklus

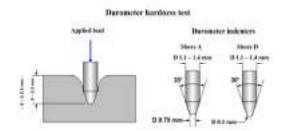
2. M-Code

Tabel 2.2 Istilah-istilah M-code

No.	Istilah	Penjelasan
1	M00	Pengeposisian bebas
2	M01	Interpolasi lurus
3	M02	Interpolasi melingkar searah jarum jam (CW)
4	M03	Interpolasi melingkar berlawanan arah jarum jam
5	M04	Program berhenti pada waktu tertentu
6	M05	Data program dapat di-input
7	M06	Pembatalan perintah koordinat polar
8	M07	Perintah koordinat polar
9	M08	Interpolasi helical
10	M09	Konversi satuan <i>inchi</i> (british)
11	M10	Konversi satuan mm (metric)
12	M11	Pengembalian posisi referensi
13	M19	Perintah skip (melangkahi)
14	M23	Pembuatan ulir (<i>Threading cutting</i>)
15	M24	Cancel kompensasi <i>cutter</i>
16	M29	Kompensasi panjang tool positif (G43), Negatif
17	M30	Menaikkan offset tool
18	M48	Menurunkan offset tool
19	M50	Menaikkan ganda offset tool
20	M52	Menurunkan ganda offset tool
21	M53	Pembatalan kompensasi panjang tool
22	G54	Penyatuan system koordinat local
23	M80	Sistem koordinat workpiece
24	M81	Pengeposisian arah tunggal
25	M90	Pengerjalaan tapping (ulir dalam)
26	M91	Pengerjaan pemotongan
27	M98	Menghitung putaran <i>Tapping</i>
28	M99	Pengerjaan proses canned cycle
29	M104, M107,	Sering digunakan dalam printer 3D

2.10 Kekerasan pada plastik

Kekerasan dari suatu plastik umumnya mengacu pada kemampuan suatu bahan plastik untuk menahan gaya tekan dari suatu material yang kaku, dan nilai numeriknya dapat dianggap sebagai suatu refleksi kuantitatif dari tingkat kelembutan dan kekerasan dari plastik tersebut. Meskipun kekerasan plastik tidak memiliki korespondensi yang melekat dengan sifat mekanik lainnya seperti kekerasan bahan logam, kekerasan adalah indikator penting dari kontrol kualitas bahan dan inspeksi produk.


2.10.1 Metode Pengukur dan Skala Durometer

Durometer merupakan instrumen yang menggunakan prinsip yang digunakan untuk mengukur kekerasan didasarkan pada mengukur kekuatan perlawanan dari penetrasi jarum ke dalam bahan uji di bawah beban pegas diketahui. Beberapa bahan yang dapat diuji oleh durometer (jenis durometer) yaitu, ada yang digunakan untuk Karet, Plastik, Pipa, Kayu dan lain – lain.

Kekerasan dapat didefinisikan sebagai perlawanan bahan untuk indentasi permanen. Skala durometer didefinisikan oleh Albert F. Pada tahun 1920, Shore merupakan pengembangkan perangkat pengukuran untuk mengukur Shore kekerasan. Sebutan durometer ini kerap digunakan untuk merujuk terhadap pengukuran dan juga instrumen itu sendiri.

Perangkat ini biasanya digunakan sebagai ukuran kekerasan dalam polimer, elastomer, dan karet. Tetapi perangkat shore ini bukan lah tester kekerasan pertama maupun pertama yang disebut sebagai durometer (ISV duro-+ meter; dibuktikan sejak abad ke-19). Namun sekarang perangkat ini biasanya mengacu pada kekerasan Shore (perangkat lain hanya disebut Hardness tester.

Skala Durometer

Gambar 2.15 Skala Durometer

Durometer ini ada beberapa skala yang digunakan untuk bahan dengan sifat yang berbeda. Ada dua skala yang paling umum digunakan yaitu tipe A dan tipe D. Skala A ini digunakan untuk plastik yang lembut, sedangkan skala D digunakan untuk yang lebih keras. Namun, standar pengujian untuk total 12 sisi, tergantung pada tujuan penggunaan ; tipe A , B , C , D , DO , E , M , O , OO , OOO , OOO – S , dan R. Setiap skala menghasilkan nilai antara 0 dan 100 , dengan nilai yang lebih tinggi menunjukkan bahwa material tersebut lebih keras.

2.10.2 Metode Pengukuran

Sama halnya seperti banyak uji kekerasan lainnya, bahwa durometer ini mengukur kedalaman lekukan dalam materi yang diciptakan oleh sebuah kekuatan yang diberikan pada kaki tekan standar. Kedalaman ini tergantung pada kekerasan material yaitu, sifat viskoelastik nya, bentuk kakitekan, dan waktu pengujian.

Cara kerja dari alat ukur kekerasan permukaan ini adalah dengan meletakkan penetrasi jarum ke dalam bahan uji di bawah beban pegas diketahuiyang dipasangkan pada alat tersebut, selanjutnya sejajarkan alat ukur permukaan tersebut dengan bidang material yang akan di uji. Pada saat pengerjaannya, alat ukur ini tidak boleh bergerak karena akan mengganggu hasil dalam membaca kekesaran dari permukaan material tersebut.

Gambar 2.16 shore hardness tester (Durometer)

BAB III

METODOLOGI PENELITIAN

Metode penelitian yang dipakai adalah Metode Eksperimental

3.1 Tempat dan Waktu Penelitian

a) Tempat

Lokasi pembuatan kotak kubus yang dilakukan di Laboratorium Proses Produksi Universitas HKBP Nommensen Medan yang bertempat di jalan SutomoNo.4A Medan.

b) Waktu

Lamanya pembuatan dan pengambilan data pada tanggal 20 mei 2022 sampai 25 juli 2022 (2 bulan).

3.2 Mesin, Alat dan Bahan

Adapun alat dan bahan yang digunakan dalam pembutan spesimen , adalah sebagai berikut : Mesin, Alat dan Bahan

- 1. Mesin
 - a. Komputer atau Laptop

Berfungsi untuk mengambar objek yang dirancang.

Gambar 3.1 Laptop

Spesifikasi laptop yang digunakan dalam studi numeric ini adalah sebagai berikut:

1. Processor : Intel(R) Core(TM) i3-7020U CPU 2.3 GHz

2. RAM : 4.00 GB

3. Operation system: windows 10 pro 64 bit operation system.

b. Mesin 3D Printing

Berfungsi untuk mencetak objek yang digambar

Gambar 3.2 Mesin 3D Printing Model Ender 5 Pro

2. Alat

a. Gunting

Berfungsi untuk memotong filamen

Gambar 3.3 Gunting Filamen

b. Kertas PasirBerfungsi untuk pengamplasan

Gambar 3.4 Kertas Pasir

c. Jangka SorongBerfungsi untuk alat ukur benda yang ingin digambar

Gambar 3.5 Jangka sorong

3. Bahan

a. ABS (Acrylonitrile Butadiene Styrene)

Gambar 3.6 ABS (Acrylonitrile Butadiene Styrene)

Spesifikasi filamen ABS 500gram 1.75mm

print temperature: $180^{0}C - 240^{0}C$

print bed temperature: $20^{0}\text{C} - 100^{0}\text{C}$

3.3 Spesifikasi Printer 3D yang Digunakan

1. Nama merek : ENDER-5 PRO

2. Filamen : ABS 500gram 1.75mm

3. Tegangan : 110-220 V

4. Diameter *nozzle* : 0.4 mm

: 0,3 mm

5. Kecepatan percetakan : 60 - 120 mm/s

6. Printing teknology : FDM

7. *Printer size* : 220mm x 220mm x 300mm

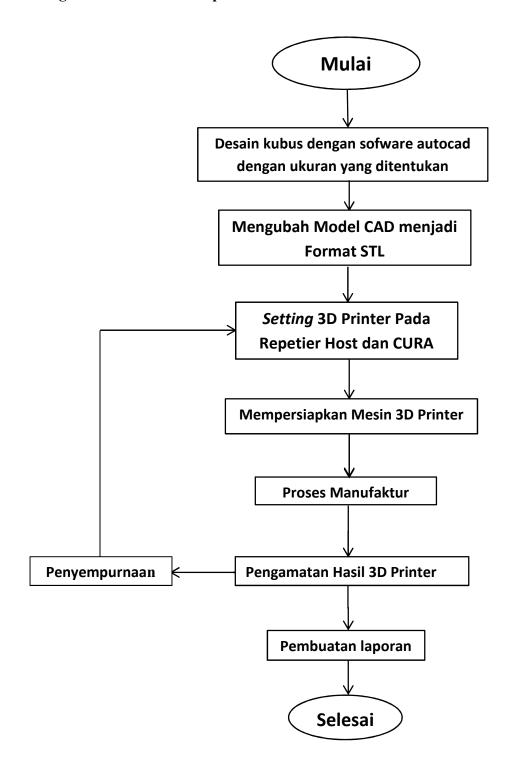
8. Format file : STL,OBJ,AMF

9. Temperatur maksimum *nozzle* : 260 °C

10. Temperatur maksimum plate : 135 °C

11. Bahasa : English

3.4 Ukuran Gambar dan Spesimen uji kekerasan


Spesimen uji kekerasan dengan ukuran yang ditentukan dengan temperatur cetak filament ABS 200°C, 220°C, 240°C dan Kecepatan 90 mm/s.

Dimensi spesimen 50 mm x50 mm x50mm.

Gambar 3.7 Gambar Spesimen (View Isometrik)

3.5 Diagram Alir Metode Eksperimental

