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Preface

First of all, I would like to say welcome to Bukittinggi, Indonesia to all of you. It is an
honour for us to host this conference. We are very happy and proud because the
participants of this conference come from many countries; we have participants
from Libya, Japan, Qatar, India, Malaysia, Singapore, Thailand, Iran, and many
more.

Ladies and gentlemen, according to constructivism theory, mathematics comes out as
a result of social construction; that's why, the outcomes of our researches in
mathematics, like theorem or formula of mathematics, should be communicated in a
scientific forum such as seminar or conference. Through this kind of seminar or
conference, we could refine the existing theorems or we could get new ideas to
produce a new one. Seminar or conference which is held annually enables us to
continually develop the science of mathematics until the end of the time.

That's way, in this two-day conference, we are going to discuss around 250 papers
coming from diverse aspects of mathematics ranging from analysis, applied
mathematics, statistics, algebra, Computational Mathematics, mathematics
education, and other related topics.

For all of us here, I would like to convey my endless appreciation and gratitude for
your participation in this conference.

Thank you very much

Dr. I Made Arnawa
Chairman of the Conference
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Message from Rector Andalas University

It gives me great pleasure to extend my sincere and warm welcome to the
participants of the Sth International Conference on Mathematics Statistics and
Application (The IMT GT's 5th ICMSA 2009) - A Joint Scientific Program
organized by Universities over Indonesia, Malaysia and Thailand Growth Triangle
Region. On behalf of Andalas University, let me welcome all of you to the
conference in Bukittinggi, West Sumatra Province, the land of Minang kabau.

We believe that from this scientific meeting, all of participants will have time to
discuss and exchange ideas, findings, creating new networking as well as strengthen
the existing collaboration in the respective fields of expertise. In the century in which
the information is spreading in a tremendous speed and globalization is a trend,
Andalas University must prepare for the tough competition that lay a head. One way
to succeed is by initiating and developing collaborative work with many partners
from all over the world. Through the collaboration in this conference we can improve
the quality of our researches as well as teaching and learning process in mathematics
and to achieve standards and requirements applied in many developed countries. I
strongly believe that this conference is and extraordinary testimony to our capacity
building at international, regional and local level.

I would like to express my deep gratitude to International Scientific Committee of
who has honored the Mathematics Department, Faculty of Mathematics and Natural
Sciences, Andalas University to host this prestigious conference. This is a very
special opportunity for us to be involved in a regional community of knowledgeable
scientist in the field of mathematics, statistics and their applications. I would also like
to extend my gratitude to keynote speakers, participants, and organizer of this
conference for their contribution to this event. My special thank is also rendered to
the local government of West Sumatra for various supports and facilities.

Finally I wish all participants a fruitful deliberation at the conference. I also wish all

participants and accompanying spouses a pleasant and enjoyable stay in Bukittinggi
City, West Sumatra.

e

Prof. Dr. Ir. Musliar Kasim, MS
Rector
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Abstract

I this paper we develop secant methods for nonlinear system using a population of previous iterates. Contrarily to classic
secant methods, where exact interpolation is used, we prefer a least square approach to calibrate the linear model. We
address an explicit control of the numerical stability of the method. We show that our approach can lead to an update
formula. In that case, we prove that the local convergence of the corresponding undamped quasi-Newton method.

1. Introduction

We consider the standard problem of identifying the solution of a system of nonlinear equations

F(x)=0 1)
wiere F i R" — R" is a diferentiable function. Since Newton, this problem has reecived a tremendous amount
= attention. Newton's method and its many variations are still intensively analyzed and used in practice. The
==z of Newton-like methods is to replace the nonlinear function F by a linear model, which approximates F
= the neighborhood of the current iterate. The original Newton method invokes Taylor's theorem and uses
e gradient matrix (the transpose of which is called the Jacobian) to construt the linear model. based on the
secant equation. Because secant methods exhibit a g-superlinear rate of convergene, they have been
‘mtensively analyzed in the literature.

The secant equation imposes that the linear model exactly matches the nonlinear function F at two
successive iterates. If the number of unknowns 1) is strictly greater than 1, an infinite number of linear models
werify the secant equation. Therefore, each secant method derives a specific update formula which arbitrarily
sicks one linear model among them. The most common strategies are called “least-hange updates” and select
e linear mode! whih minimizes the difference between two successive models.

In this paper, we provide a class of algorithms generalizing these ideas. Instead of using only two
saccessive iterates to determine this linear model, we maintain a “population” of previous iterates. This
soproach allows all the available information colleted through the iterations to be explicitly used for
calibrating the model.

An important feature of our method is that we do not impose an exact math between the model and
e function. Instead, we use a least squares approach to request that the model fits the function “as well as
possible”. In this paper, we present the class of algorithms based on our method (Section 2.2) and prove that
ey are locally convergent (Section 3). This class of algorithms exhibits a faster convergene and a greater
sobustness than quasi-Newton methods for most numerial tests that we have performed (Setion 4) at a cost of

~substantial linear algebra computation. Therefore it is valuable when the cost of evaluating F is high in
somparison with the numerical algebra overhead.

Quasi-Newton methods

Quasi-Newton methods consider at each iteration the linear model

Li(x, By) = F(xi) + B (x - x) ()

h approximates F(x) in the neighborhood of x; and computes Xy as a solution of the linear system L; (x;

= 5,) 0. Consistently with most of the publications on this topic, quasi-Newton methods can be summarized

s methods based on the following iterations:

Xee1 = Xg - B Flxy), (3)

sllowed by the computation of B,. The pure Newton method is obtained with B; = J(x;) = V F(x,)r, the

cobian of F evaluated at x;, that is a n  n matrix such that entry (i, j) is & F;/0 x;. We refer the reader to
is and Schnabel (1996) for an extensive analysis of Newton and quasi-Newton methods.

Secant methods

Scoyden (1965) proposes a quasi-Newton method based on the secant equations, imposing the linear model
1o exactly match the nonlinear function at iterates xpand x4, that is

Lii(x Bret) = F(xy),

Ly (i, Boy) = Flxesy) 4)
Sebtracting these two equations and defining y; = F(xg.,) - F(x;) and s; = xp., - X, we obtain the classical
scant equation:

Brase =y (5)

Clearly, if the dimension 1 is stritly greater than 1, there is an infinite number of matrices
isfying (5). An i

B
MWMW&M‘M“WMgeMW'Meg;:
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Clearly, if the dimension 7 is stritly greater than 1, there is an infinite number of matrices By
satisfying (5). An arbitrary decision must consequently be made. The “least-change secant update" strategy,
proposed by Broyden (1965), consists in seleting among the matrices verifying (5) the one minimizing
variations (in Frobenius norm) between two successive matries By and By.,. It leads to the following update
formula

7.
By = By+ m (6)
Sk Sk
This method has been very sucessful, and has been widely adopted in the field. However, we believe that the
idea of interpolating the linear model at only two iterates and ignoring previous iterates could be too
restritive. Therefore, we propose to use more than two iterates to build the linear model.

This idea has already been considered. Dennis and Schnabel (1996) say that “Perhaps the most
obvious strategy is to require the model to interpolate F(x) at other past points... One problem is that the
directions tend to be linearly dependent or lose to it, making the computation of (the approximation matrix) a
poorly posed numerical problem". Later, they write “In fact, multivariable generalizations of the secant
method have been proposed ... but none of them seem robust enough for general use."

There are few attempts to generalize this approach in the literature. A first generalization of the
secant method is the sequential secant method proposed by Wolfe (1959) and disussed by Ortega and
Rheinboldt (1970). The idea is to impose exact interpolation of the linear model on 7 + 1 iterates instead of 2:

Lisi(oirp Bent) = Flxiery), j=0, 1, ..y m. @)
or, equivalently,

Bk*lsk-]:yk-j, j=05 lv"-')n'l) (8)
where ; X4y = x;, and y = F(xyy,) F(x)), for all i. If the vectors Sk k15 -+ » Sk are linearly independent,
exists exactly one matrix By, satisfying (8), which is

By = YMS'IM ©)
Where Yie1 = Uk Yietseer » Vions1) and Seey = (S Stetyers 5 Skantt)-

Quoting Ortega and Rheinboldt (1970) «...(sequantial methods) are prone to unstable behavior and
... no satisfatory convergene results can be given". Nevertheless Gragg and Stewart (1976) propose a method
which avoids instabilities by working with orthogonal factorizations of the involved matries. Martinez (1979)
gives three implementations of the idea proposed by Gragg and Stewart (1976) and some numerical
experiments.

Multi-step quasi-Newton methods have been proposed by Moghrabi (1993), Ford and Moghrabi
(1997) and Ford (1999) in the context of nonlinear programming. An interpolating path is built based on
previous iterates, and used to produce an alternative secant equation. Interestingly, the best numerical results
were obtained with no more than two steps. ;

We believe that the comments about the poor numerical stability of those methods found in major
reference texts such as Dennis and Schnabel (1996) and Ortega and Rheinboldt (1970) have not enouraged
researchers to pursue these investigatations. We provide here a successful multi-iterates appoach with robust
convergene properties and exhibiting an exellent behavior on numerical examples. The idea of using a least
squares approach is similar to an idea proposed in the physis litterature by Vanderbilt and Louie (1984), whih
has inspired other authors in the same field (Johnson, 1988, Eyert, 1996). Bierlaire and Crittin (forthoming)
have used a similar approach for solving noisy large scale transportation problems.

2.2. Population-based approach

We propose a class of methods calibrating a linear model based on several previous iterates. The difference
with existing approaches is that we do not impose the linear model to interpolate the function. Instead, we

prefer to identify the linear model whih is as close as possible to the nonlinear function, in the least squares
sense.

At each iteration, we maintain a finite population of previous iterates. Without loss of generality, we
present the method assuming that all previous iterates Xo, ... , Xg+1 are considered. Our method belongs also to
the quasi-Newton framework defined by (3), where By, is computed as follows.

Byt =arg;nin(,§,]| O F(x) =04y Ly (53 ), +|IT-BL,, +r||2) (10)

Where Ly, defined by (2) and B,?*, € R"*" is an a priori approximation of Bj.;. The role of the second term
is to overcome the under-determination of the least squares problem based on the first term and also control
the numerical stability of the method. The matrix I" contains weights assoiated with the arbitrary term Bf 218

and the weights w,’( 41 € R are associated with the previous iterates. Equation (10) can be written in matrix

form as follows: By, =
Q o Q o
I (S od | S ) A
( k+1 "")(0,”, r ) (kol lol{o l—-]

where Q € 0 **' is a diagonal matrix with weights @, ; on the diagonal for i = 0, —, £&. The normal
equations of this least squares problem lead to the following formuia-

2

argmin
J

F
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The role of the a priori matrix B,?*, to overcome the possible underdetermination of problem (10).

For example, choosing B,?" = By (similarly to classial Broyden-like methods) exhibits good properties. In
that case, (11) becomes an update formula, and local convergene can be proved (see Section 3).

The weights a),'( +1 capture the relative importance of each iterate in the population. Roughly

speaking, they should be designed in the lines of the assumptions of Taylor's theorem, that is assigning more
weight to points close to x;,, and less weight to points which are far away. The matrix T’ captures the

importane of the arbitrary terms defined by B,?*, for the identification of the linear model. The weights have
1o be finite, and I must be such that

FIT 4S 02T (12)
is safely positive definite. To ensure this property we describe below three possible approaches for choosing

IT”: the geometrical approach, based on specific geometri properties of the population, the subspace
decomposition approach, decomposing R" into the subspae spanned by the columns of Sy., and its orthogonal
complement, and the numerical approach, designed to guarantee a numerically safe positive definiteness of

(12).

The geometrical approach assumes that n + 1 members of the population form a simplex, so that the columns
of Si;; span R, and (12) is positive definite with TT"” = 0. In that case, (11) becomes

B, = Yk,.Q’S;.l (Sk+|QZS;-1)_l (13)
If there are exactly n + 1 iterates forming a simplex, the geometrical approach is equivalent to the
smierpolation method proposed by Wolfe (1959), and (13) is exactly (9), as Sy, is square and non singular in
“hat ase. This approach have not shown good numerical behavior in practice as mentioned in Section 2. Also,
i requires at least n + | iterates, and may not be appropriate for large-scale problems.

The subspace deomposition approach is based on the OR decomposition of Si.;. We denote by r the
rank of Spy, with » < n, and we have Sj,, = OR,

where

o= (01 ?2) (14)
With Oy is(nxr), 0 is (nxn- r),andRis (n x k + 1). The columns of O, form an orthogonal basis of
e range of S,;. We define now I such that

r=(0ner2) (15)

®at is O where Q) has been replaced by a null matrix. With this construction I'T” + S QS is

k+1 +
mvertible and Sy, IT? = 0. In the case where Si+1 spans the entire space then r = », T is a null matrix and
1) is equivalent to (13).

With the subspace decomposition approach, the changes of F predited by By, in a direction
arthogonal to the range of Sy, is the same as the one predited by the arbitrary matrix B y,.This idea is
exactly the same as the one used by Broyden (1965) to construct his so called Broyden's Good method.

Numerical problems may happen when the columns of S}, are close to linear dependence. These are
e problems already mentioned in the introduction, and reported namely by Ortega and Rheinboldt (1970)
and Dennis and Schnabel (1996). Clearly, such problems do not occur when Sis1 has exactly one column,
~which leads to the classical Broyden method.

The numerical approach is designed to address both the problem of overcoming the under-
“S=t=rmination, and of guaranteeing numerical stability. It is directly inspired by the modified Cholesky
Sactorization proposed by Schnabel and Eskow (1991). The modified Cholesky fatorization of a square
merix A creates a matrix E such that A + E is safely positive definite, while computing its Cholesky
- Storization. It may namely happen that A has full rank, but with smallest eigenvalue very small with regard
% machine preision. In that case, E is non zero despite the fact that A is non singular. We apply this
sshmique with 4 = Sy, Q'S and E = TT" .So, if the matrix Sy, Q2 STy, is safely positive definite, I'T" =
& and (11) reduces to (13). If not, the modified Cholesky factorization guarantees that the role of the arbitrary
== I is minimal.

We now emphasize important advantages of our generalization combined with the numerical
~wwroach. Firstly, contrarily to interpolation methods, our least squares model allows to use more than p

&t to identify a model in a subspace of dimension p (where p < n). This is very important when the
‘ssetive function is expensive to evaluate. Indeed, we make an efficient use of all the available information
the function to calibrate the secant model. It is namely advantageous compared to Broyden's method,

only two iterates are explicitly used to build the model, while previous iterates only play an implicit
Sue to the “least-change” principle. Secondly, the numerical approach proposed above controls the
ical stability of the model constrution process, when a sequene of iterates may be linearly dependent.
+ the fact that existing methods are special cases of our approach allows to generalize the theoretical
pratical properties already published in the literature, and simplifies their extension to our context. We
this principle to the local convergene analysis in section 3. The main drawbak is the increase in

ical linear algebra as the least squares problem (10) must be solved at each iteration. Therefore, it is

appropriate for problems where F is very expensive to compute.
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numerical linear algebra as the least squares problem (10) must be solved at each iteration. Therefore, it is
particularly appropriate for problems where F is very expensive to compute.

We conclude this section by showing that our population-based update formula is a generalization of
Broyden update. Actually, the classical Broyden update (6) is a special case of our update formula (11), if
B%. = By, the population contains just two iterates x, and Xy, and the subspace decomposition approach is
used. The secant equation (5) completely defines the linear model in the one-dimensional subspace spanned
by Sk = Xy - Xy, While an arbitrary decision is made for the rest of the model. If we define ©*,; =1 and T is
given by (15) withr = 1, we can write (11) as

1
Bio =B +(t, - Bys,)sf (TT7 45,5 ) (16)
The equivalence with (6) is due to the following equality
Al = 1
ST (CT 45,57 =sf — ()
Sk Sk

obtained from the fat that s} [T =0, by (15)

3. Local convergence analysis
We show that if I'T" is determined by the numerical approach described in Section 2.2, then the
undamped algorithm described in Section 3.1, where By, is defined by (11) in its update form (i.e. B,?*, =

By), locally converges to a solution of (1) if the following assumptions are verified. Note that the assumptions
made on the problem are similar to those given by Broyden (1965).

Assumptions on the problem:

(Py) F:R"— R"is continuosly differentiable in an open convex set D

(P2) The System of equations has a solution, that is 3 x* € D such that F(x*) =0
(P3) J(x) is Lipschitz continuosly at x* with constant K}, that is

I 7CX) = J(*) €Ky | x=x*]| Vx e D (18)
In the neihgboorhood D
(P4) J(x*) is non singular and three exist y> 0 such that || Jx*)"'|| < »

Assumptions on the algorithm :
(A1) The algorithm is based on the iteration (3) with x,and B, as initial guess

(A2) By is generated by (11) with By, =B, .
(A3) I'T" is computed using the numerical approach.
(A4) Vi<k, we have ®,,, <M, for all k and some constant M, >0.

(A5) The size of the population p is bounded above by M , Where M 0 0 is a constant

1
The notation “" is used for the /; vector norm "x" =(x ; x)E as well as for the Frobenius matrix norm
||A" The notation”-"2 is used for the 1, matrix norm "A"z . For the sake of simplification, we denote

W =0, 8=8,,,Y=Y,,,, and I, ={0,1,...,P}. The proof uses some lemmas. Lemma 1 and 2 are

classical results from the literature. Lemmas 3-5 are tehnical lemmas related to our method. Their proofs are
provided in the appendix.

Lemma 1 Let F:R" — R" be continuously difierentiable in the open convex D < R",
x € D, and let j be Lipshitz continuous at x in the neighborhood D with constant K. Then for any u, v € D,

|F () = Fu) — J(x)(v—u) <K, HV—XHZM v - 4| (19)
Proof. See, for example, Dennis and Schnabel, 1996.
Lemma 2 Let A, C € R"™ and assume that A is invertible, with "A "" Spdf "A = c|| <p
and B pt <1, then C is also invertible and

-1 H
HCHSI_H# 0)

Proof. This lemma is known as the Banach Perturbation Lemma. (See, for example, Ortega and Rheinboldt,
1970). :

Lemma 3 If assumptions (4,) - (4s) are verified, then
2 12
Is @ 57| <2m, M2 max Ix - . @1)
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Lemma 4 If assumptions (P ), (P,) and (P3) are verified then:

"(Y-J(x’)SMS 2M, K, g)'af( ("x: _x.HZ) (23)
Where x* is solution of (1).
Lemma 5 If assumption (43) is verified, then

T+ s 02 57y e 24)

where T >0

The 1j:oarameter Tin Lemma 5 controls the way we perturb SQ’S™. It guarantees that the smallest eigenvalue of
(IT" + SQ’S") is strictly greater than t and, therefore, safely positive in a finite arithmatic context if 7 is
properly chosen. Schnabel and Eskow (1991) suggest to choose t (macheps)'” where macheps is the machine
epsilon.

Theorem 6 Let assumptions (Py) to (P,) hold for the problem and assumptions (4,) to (As) hold for the
algorithm. Then there exists two non-negative constants a; and a; such that for each x, and By:

" By, _J(xs)" s (1 o max, ., (X - x.llz) IIBk = J(x')"
+a; max, , "x, - x'"3.
Proof. From the update formula (11), and defining
T =I—SQ*ST IT” +5Q? STy
16 =(Y—J(x.)S) st (ITT+SQ? ST)",

we obtain
18,60 = 8, - eI N1 4 (- 9] o sty
<|E]18, - IGH) + )
“om Lemmas 3 and we obtain
[l <kl + Js@ s JrrmesqrsTy| 6)
<l+q gxlax"x, -x¥ @7)
with
o= 2‘7/; M, M2 >0
we conclude the proof using Lemmas 3, 4 and 5 to show that :
[l <[r-seas) e sl +sazst) | @)
<a, max "x, = Jur"‘"3 (29)
- wIh
= ¥ K, MpM2 > 0

!M 7 Let assumptions (P,) to (Ps) hold Jor the problem and assumptions (4,) to (As) hold for the
s i Then for each r € ]0, 1, there exists & (r) and 6 (r) such that for

o = x4 <& () (30)

1B, = J(x*)| < 5(r) G1)
sequence X,y = xp- By F (x)) is well defined and converges g-linearly to x* with g-factor at most r.
ore, the sequences ﬂIBk ||} , and IIB y "}k are uniformly bounded.

The structure of the demonstration is similar to the proof of Theorem 3.2 in Broyden et al. ( 1973). We
parposedly skipped some identical tehnical details.
First choose ¢(r) = gand 3 (r) = § such that

Y(1+0) (Kyp & + 28) <r (2)
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and
£ g
2a,+a —— <4. (33)
[ ' i r) 1-72
We invoke Lemma 2 with p = yand B =23 to prove that B, is non-singular and
185 < 7 4. (34)

Note that assumption 2§y <1 for Lemma 2 is directly deduced from (32).
The improvement after the first iteration, that is

"Jcl —X *" < r"x0 -x *" (35)
is independent of the specific update formula and, therefore, is proven in Broyden et al. (1973).

The result for iteration k is proven with an induction argument based on the following recurrence
assumptions:

|B,—J*| <26 (36)

"xm+I = x*" < r||xm = x*ll 37
forallm=1, ..., k-1
we first prove that "B,r -J *n < 20 using Theorem 6. From (25) we deduce

|Buoi=I*)]| - |B,, = 7))

<a, max |x, - x¥[B, - J (*)| + e max I, - =’

i€l
<ar’™ £226 + a, ™ g3, (38)
Summing both sides of (38) for m ranging from 0 to k - 1, we deduce that
2
& &
1B, = JGx*)| <[|B, = S| + (2a, S +a, I—J o (39)
=r)1-r

where (40) derives from (31) and (33).
The fact that By is invertible and "B,: '|| < y(1+r) is again a direct application of the Banach

Perturbation Lemma 2. Following again Broyden et al. (1973), we can now obtain (37) for m = k, conluding
the induction proof.

3.1. Undamped and damped quasi-Newton methods

All the algorithms presented in Section 2.1 and 2.2 are based on the following structure.
e GivenF:R"—R", xo [JR" and B, CJR™*"
e  While stopping criteria is not verified:

— Find s solving By, = -F (xy),
- Evaluate F(x;,) where Xy4; = X4 + 5,
- Compute By.,.

This general algorithm is often called undamped quasi-Newton method, i. e. without any step control or
globalization methods. It allows to compare different type of algorithms, in term of number of funtion
evaluations, and their robustness without introducing a bias due to the step control or the globalization
method. Consequently, the algorithms differ only by the method used to compute By.,.

The main drawback of undamped methods is that we cannot ensure convergene from remote starting
points. Moreover, Newton-like methods without any control on the step lengths may encounter several other
soures of failure. For instance, the components of the unknown vector (x) or the funtion vector (F) or the
Jacobian approximate (By) may become arbitrarily large.

Globalization strategies can be grouped into two disticnt frameworks: linesearch and trust-region.
Linesearch approaches are applied to a merit function based on F, used to measure progress toward a solution
of F(x) = 0 (see for instance Noedal and Wright, 1999). Trust-region methods and filter-trust-region methods
(see Gould et al., 2005) can be used to solve the associated nonlinear least squares problem:

min - |F ()} @0

xeR"

The main disadvantage of the second type of globalization is that the iterates can be stucked in a local
minimum of (41), which is not a solution of F(x) = 0. As we want to keep solving the original problem F(x) =
0, we adopt in this paper the linesearch approach.

When integrating a linesearch strategy to the previous undamped quasi- Newton framework, we
obtain the following structure.

* GivenF:R"—R", x, €R"and B; € R***
e  While stopping criteria is not verified :
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Compute By,

This general method is called damped quasi-Newton method. In the following, we describe how we
determine the step o at each iteration of the algorithm using the classical sum-of-squares merit function

1 12
m(x,) =5" F(x) | =5 ZF ()

o measure progress toward a solution of the system F. We choose a step o satisfying the following Armijo-
fype condition with f € (0,1):

m(x, + a,s) <m(x,) + a, fVm(x,)" s.
Note that B is a parameter which defines the quality of the decrease we want to obtain. Condition (42) is valid
only if the quasi-Newton direction s is a descent diretion for min Xy, that is:

Vm(x,)" s<0. (43)
1f condition (43) holds, we find a step o satisfying (42) using a backtraking strategy. Unfortunately, we do
mot have the guarantee that our quasi-Newton direction s = -B™' F(xy) is a descent direction for m, unless By
& close enough to the real Jacobian at x,, J(x) = V F(x)', and V m(x)" s is bounded below.
Consequently, we use the following sequential procedure to find a desent direction for the merit function in
the current iterate X,

»  Check whether the quasi-Newton direction s = By F(xy) is a descent direction for min x,;
¢ If not, compute using the modified Cholesky factorization (see Schnabel and Eskow, 1999) can
auxiliary direction §

where 7> 0 and I is the identity matrix in dimension n. Aording to Nocedal and Wright (1999), we

an always choose t to ensure that m( V xk)T s is bounded below.

*  Check whether the quasi-Newton direction s is a descent direction for m in Xis
* Ifnot, do the following:

- Update the current approximation of the Jacobian B, with a new point close to x; to get B, More
precisely, we take a step of length le -4 in the direction s. The goal is to try to get a good local
approximation of J (x);

- Compute the direction s* = -(B,)" F(x,);

and restart the process with s*.

Note that we compute the directional derivative of the merit function m in a direction s, vm(x)Ts,
‘s a finite differences procedure.

Numerical Results
. General behavior

“We present here an analysis of the performance of our method, in comparison to classical algorithms. All
corithms and test functions have been implemented with the package Octave (Eaton, 1997) and
‘eemputations have been done on a desktop equipped with 3GHz CPU in double precision. The machine
epsilon is about 2.2e-16.
The numerical experiments were carried out on a set of 43 test functions. For 37 of them, we
sider five instances of dimension n = 6, 10, 20, 50, 100. We obtain a total of 191 problems. This set is
posed of the four standard nonlinear systems of equations proposed by Dennis and Schnabel (1996) (that
Extended Rosenbrok Function, Extended Powell Singular Function, Trigonometric Function, Helial
Function), three functions from Broyden (1965), five functions proposed by Kelley (2003) in his book
Newton's method (that is, Arc tangent Function, a Simple Two-dimensional Function, Chandrasekhar H-
son, Ornstein -Zernike Equcations, Right Preconditioned Convetion-Diffusion Equcation), three linear
st=ms of equcations (see Appendix), the test functions given by Spediato and Huang (1997) and some test
stions of the colletion proposed by More et al. (1981). For each problem, we have used the starting point
sosed in the original paper. Note that the results include all these problems.
The algorithms are based on both the damped and undamped quasi-Newton framewok given in
Section 3.1 with the following characteristics: the initial Jacobian approximation B, is the same for all
srithms and equal to the identity matrix. The stopping criterion is a composition of three conditions: small
sdual, that is [|F(x) || / || Fxo) || < 10,-6, maximum number of iterations (k = 200 for problems of size n <
#d k > 500 for problems of size n > 20), and divergene, diagnosed if || F(x)|| > 10,100r if a descent
=ction has not been found after several updates of the approximate Jacobian in the linesearch procedure
=aning that we have not been able to find a sufficently good approximation of the Jacobian).
We consider four quasi-Newton methods:
1. Broyden's Good Method (BGM), using the update (6).
2. Broyden's Bad Method (BBM), also proposed by Broyden (1965). It is
based on the following secant equation:

—n-l
Sy =B, yi (44)
and dircetly computes the inverse of By:
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-1 T

Bk_ll = Bk-l 4 (8, B/; Vi) Vi

Ve Vi
Broyden (1965) describes this method as “bad”, that is numerially unstable. However, we
have decided to include it in our tests for the sake of completeness. Moreover, as discussed
below, it does not always deserve its name.

3. The Hybrid Method (HMM) proposed by Martinez (1982). At each iteration, the algorithm
decides to apply either BGM or BBM. Martinez (2000) observes a systematic improvement
of the Hybrid approach with respect to each individual approach. As discussed below, we
reach similar conclusions.

4. Our population-based approach, called Generalized Secant Method (GSMz defined by (11)

in its update form with B,?*, = By using the numerical approach described in Section 2.2,

with T = (macheps)'” and a maximum of p = max(n, 10) previous iterates in the population.
Indeed, including all previous iterates, as proposed in the theoretical analysis, may generate
memory management problems, and anyway does not significantly affect the behavior of
the algorithm. The weights are defined as
; 1
D= e WA >
“X k+1 i X i “

The measure of performance is the number of function evaluations to reach convergence. Indeed we.
are interested in applying the method on computation-nally expensive systems, where the running time is
dominated by the function evaluations. We are presenting the results following the performance profiles
analysis method proposed by Dolan and More (2002).

If f . is the performance index (the number of function evaluations in our case) of algorithm a on
problem p, then the performance ratio is defined by

_ fp,a

min,,

(45)

Fpa > 47)
p.a
if algorithm a has converged for problem p, and r,, = rg otherwise, where rg; must be strictly larger than any

performance ratio (47). For any given threshold =, the overall performance of algorithm a is given by

1
p, (1) =— @, (7)
n,
where n,, the number of problems considered, and ®,(r) is the number of problems for wchih r,, <.
In particular, the value p,(1) gives the probability that algorithm a wins over all other algorithms.

The value limn—rg py(m) gives the probability that algorithm a solves a problem and, consequently.
provides a measure of the robustness of eah method.
1

T T

08 |

06

Probability ( r <= Pi)
i

odf f 4
=
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Figurel: Perfomance Profile

We first analyze the performance profile of all algorithms desribed above without globali
strategy on all problems. The performance profile is reported on Figure 1. A zoom on nbetween | and 5
provided in Figure 2.

The results are very satisfactory for our method. Indeed, we observe that GSM is the most effi
and the most robust algorithm among the challenged quasi-Newton methods.

We also confirm results by Martinez (2000) showing that the Hybrid method is more reliable
BGM and BBM. Indeed, it converges on almost 50% of the problems, while each Broyden method conwi
only on less than 40% of the cases. Moreover, HMM wins more often than BGM and BBM does, and is

more robust, as its performance profile grows faster than the profile for BGM and BBM. The re
robustness of BGM and BBM is comparable.
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]

Figure 2: Perfomance Profileon (1,5)

"
as “ 45 5

Even if GSM is the most reliable algorithm, note that it only converges on 55% of the 191 runs, We
@ow present the performance profile for all algorithms in their damped version,
“nesearch strategy presented in Section 3.1, on Fi igure 3. A zoom for 1 between 1
£ Firstly we observe that the globalization technique significantly improves
peesented algorithms as expected. Secondly and most importantly,
of efficieny and robustness. More precisely, GSM is the best algorithm on more than 60% of the problems
#nd is able to solve more than 80% of the 191 considered problems. From Figure 4, we note also that when
5SM is not the best method, it converges within a factor of 2 of the best al gorithm for most problems.

The performance profile analysis depends on the number of methods that are being compared.
Therefore, we like to present a comparison between BGM and GSM only, as BGM is probably the most
widely used method. The significant improvement provided by our method over Broyden's method is
“ustrated by Figure 5 considering the undamped version of both algorithms. Figure 6 shows the superiority
&5 GSM as well, when both algorithms are globalized using the linesearch strategy.

In this paper, in the context of solving systems of nonlinear equations,
‘methods wheih do not use information about the derivative of the system to
~ssown that GSM is a very competitive derivative-free algorithm. To conclude our numerical experiments, we
‘= 10 compare our method with an algorithm using derivative information,

We consider a method belonging to the family of inexact Newton methods
1 T T T

that is making use of the
and 3 is provided in Figure
the robustness of all four
GSM remains the best algorithm in terms

we foused on quasi-Newton
be solved. We have already

BROYDEN GOOD METHOD ~———
BROYDEN BAD METHOD —-—

| GSM METHOD ——
6 7

L]
Figure 3 : Performance Profile with linesearch

: L "
1 2 2 4 5

identify a direction dj satisfying the inexact Newton condition:
I FGeo) + Jeeydi | < el P | (49)
some 7, € [0,1). The most conventional inexact Newton method uses iterative techniques to compute the
step d, using (49) as a stopping criterion. Among these iteratives techniques, Krylov-based linear
are generally chosen. Newton-Krylov methods need to estimate Jacobian-vector products using finite
approximations in the appropriate Krylov subspace.
We now challenge GSM against the Newton-Krylov method presented by Kelley (2003). The
== version of this method uses the iterative linear GMRES (proposed by Saad and Schultz, 1986) and
ses=bolic linesearch via three interpolation points. Similarly to the Newton-Kryloy algorithm, we allow
“SM 1o use a finite differences approximation of the initial Jacobian. From Figure 7, we observe that GSM is
itive with Newton-Krylov both in terms of efficieny and robustness. This result is very satisfactory as
Krylov methods have been proven to be very efficient methods to solve systems of nonlinear
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4.2. Behavior in presence of noise . gl
In practice the evaluation of systems of nonlinear equations often returns a result that is affected by noise, in
particular if the evaluation is the outcome of simulator runs. For example Bierlaire and Crittin (forthcoming)

describe such a problem in the context of transportation applications. Therefore, we
1 T T

LY

3
£

Pbadity (r<=Pi}
°
4

02

L
Figure 4 : Performance Profile on (1,3) with linesearch

conlude this section by an empirical analysis of the behavior of our method in the presence of noise in the
function. Indeed, we speculate that the use of a larger sample of iterates within a least squares framework
smooths the impact of noise on the method.
We consider a random function described by:
G(x) = Fy(x) + o(x) (50)
Where F,R" — R" is deterministic and ¢(x) is a random perturbation. We want to identify x such that F(x) =
0, but we are not able to compute F,(x) accurately. i
We consider two types of random noise: !
1. Similarly to Choi and Kelley (2000), we first assume that the noise dereases near the solution, more
preisely:
#(x)~ N(©O,0 || x=x*|F) and G(x,)=F,(x,) =0 5D
In this case, the noise is named proportional.
2. We then assume that the noise is constant, more preisely:
9(x) ~N(0, a?). (52)
In this case, the noise is named absolute.
We have selected two problems where the behavior of BGM and GSM in their undamped version
are almost similar in the deterministic case. Please

s

e
@

Probobiley (£ <a P)

s
=

2 25 3 38 4 as s

Figure 5: Performane profile -Broyden's Good Method and GSM-

(==

o

note that we do not perform tests using the damped quasi-Newton framework as the underlying globalization
strategy makes use of finite difierenes, whih is not compatible with the stohastiity present in the problems
considered in this subsetion. For each function and each type of noise the results are presented for 4 levels of
stohastiity, i. e. for four difierent values of the parameter defined in equations (51) and (52). We plot the
relative nonlinear residual, that is IGxWII/|IG(xo)ll, against the number of function evaluations.

First we consider a problem given by Spediato and Huang (1997) and fully desrcibed in Section 6.4
in the Appendix. The results obtained with the proportional noise are presented in Figure 8. Figure 8(a)
illustrates the deterministic case, with 9(x) = 0, where BGM is slightly better than GSM. When a noise with
small variance (a = 0.001, Figure 8(b)) is present, GSM decreases the value of the residual pretty quickly,
while the descent rate of BGM is muh slower. When the variance of the noise inrceases (@ =0.01 in Figure
8(0), and o = 1 in Figure 8(d)), the BGM is trapped in higher values of the residual, while GSM achieves a
significant decrease. The results obtained with the absolute noise are presented in Figure 9. The values of «
are the same as above. The behavior of the two methods is almost the same as for the proportional noise.
GSM reaches a lower level than BGM of the residual for small (e = 0.001, Figure 9(b)) and medium (a =
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0.01, Figure 9(b)) variances. When the variance is higher (a = 1, Figure 9(d)) none of the two methods is able
to significantly derease the relative residual.

The same tests have been accomplished with the Extended Rosenbrock Function given by Dennis
and Schnabel (1996) and fully described in Secion 6.5 in the Appendix. Figure 10 reports the behavior of

GSM and BGM applied to
[Y3 /'_,-— SN e e
§ asf
g 04
02
. ; { I e R e ——
1 2 3 a 5 6 7

L
Figure 6: Performane profile with linesearch -Broyden's Good Method and GSM-

s problem perturbated with a proportional noise. Figure 10(a) reports the relative residual of the smooth
system (o = 0). In the presence of the small noise (a = 0.0001, Figure 10(b)) both methods converge but
SGM needs more than twice the number of iterations needed by GSM. When the noise increases (« = 0.01,
Fizure 10()) BGM is totally disrcupted and diverges, while GSM still converges in less than 20 iterations.
With the higher value of the noise (a = 1, Figure 10(a)) both methods are stalled, but GSM achieves lower
walues for thebrelative residual. Figure 11 reports the behavior of GSM and BGM applied to this problem
permurbated with absolute noise. Again Figure 11(a) reports the relative residual of the smooth system (a = 0).
For small (« = 0.0001, Figure 11(b)) and medium (a = 0.01, Figure 11(b)) value of the noise both methods
sz2ch the same value of relative residual with GSM using clearly less evaluations of F than BGM. With a
“zer noise (« = 1, Figure 11(b)), as for the proportional case, BGM is stalled at a higher value than GSM.

We have performed the same analysis on other problems, and observed a similar behavior, that is a
sy=zmatially better robustness of GSM compared to the lassiBGM when solving a noisy system of equations.

In summary, our method is more robust than BGM in the sense that it an solve noisy problems that
SCM cannot. When both fail, GSM exhibits better decreases, whih may be advantageous in practice.

' T T T T T T

e T
03
E 06
4
g 04
02k
GSM ——
A f N . Nemton Krylgy ———
2 4 L L] 10 12 "

L]
Figure 7: Performane profile -GSM and Newton-Krylo-

&3 Large-scale problems
T8 main drawback of our approach is the relatively high cost in numerical linear algebra. Therefore it is
‘secularly appropriate for medium-sale problems where F is very expensive to compute. Bierlaire and
=== (forthcoming) propose an instance of this class of methods, designed to solve very large-scale systems
sumi=mear equations without any assumption about the structure of the problem. The numerical
= on standard large-scale problems show similar results: the algorithm outperforms classial large-
s==ie guasi-Newton methods in terms of efficiency and robustness, its numerical performances are similar to
B Newton-Krylov methods, and it is robust in presence of noise.
The complexity (both in time and memory) is linear in the size of the problem. Therefore, we were
‘i o solve very large instanes of a problem given by Spediato and Huang (1997). The algorithm has been
8= %0 converge on a problem of size 2'000'000in four hours and 158 iterations.
We are strongly interested in globalizing the large-scale version of our method, However, it requires

research to adapt our linesearch framework and to get an efficcient globalization strategy in term of
time.
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5. Conclusion and perspectives

We have proposed a new class of generalized secant methods, based on the use of more than two iterates to
identify the secant model. Contrarily to previous attempts for multi-iterate secant methods, the key ideas of
this paper are (i) to use a least squares approah instead of an interpolation method to derive

e — b =
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Figure 8: Behavior with proportional stochasticity

the secant model, and (ii) to explicitly control the numerical stability of the method.

A specific sub-class of this family of methods provides an update formula. We have proven the local
convergene of an undamped quasi-Newton method based on this update formula. Moreover, we have
performed extensive numerical experiments with several algorithms. The results show that our method
produces signifiant improvement in term of robustness and number of function evaluations compared to
classial methods. We have also shown that the globalization strategy presented in this paper signifiantly
improves the robustness of quasi-Newton methods. Eventually, we have provided preliminary evidences that
our method is more robust in the presence of noise in the function.

A theoretical analysis of a globally convergent version of our method must also be performed. We
also conjeture that the local convergene rate is super-linear. And most importantly, the general behavior of
the algorithm for solving noisy functions requires further analysis.

There are several variants of our methods that we plan to analyze in the future. Firstly, following

Broyden's idea to derive BBM from (44), an update formula for B-1 k+1 an easily be derived in the ontext of
our method:

& = -1 24
B, =B +(FFT + ¥ Q Yan) Yin (Sk+l -B; YI¢+I)' (53
e --l::
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From preliminary tests that we have performed, the “Good” and “Bad” versions of our method
compare in a similar way as BGM and BBM. Seondly, non-update instanes of our lass of methods an be
onsidered. In that case, the arbitrary matrix BO k+1 in (10) may be difierent from Bk. Choosing a matrix
independent from k allows to use iterative sheme designed to solve large- sale least squares. In that ase,
hoosing a matrix independent from k would allow to apply Kalman filtering (Kalman, 1960) to incrementally
solve (10) and, consequently, improve the numerical efficiency of the method. For large scale problems, an
iterative scheme such as LSQR (Paige and Saunders, 1982) an be considered. LSQR an also improve the
efficiency of Kalman filter for the inrcemental algorithm (see Bierlaire and Crittin, 2004).

Finally, the ideas proposed in this paper can be tailored to optimization problems.
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Figure 10: Behavior with proportional stochasticity
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Figure 11: Behavior with absolute stochasticity
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