ANALISA DEBIT BANJIR PADA SUNGAI SIBUNDONG (STUDI KASUS PLTM PARMONANGAN II)

TUGASAKHIR

Diajukan untuk melengkapi persyaratan memperoleh gelar Sarjana Strata Satu
(S-1) pada Program Studi Teknik Sipil Fakultas Teknik
Universitas HKBP Nommensen Medan

Disusun oleh:

JEFRIANTO NDRURU 18310101

Telah diuji dihadapan Tim Penguji Tugas Akhir pada tanggal 7 Februari 2024 dan dinyatakan telah lulus sidang sarjana

Disahkan oleh :

Dosen Pembimbing 1

Dosen Pembimbing II

Ir. Salomo Simanjuntak, M.T.

Dosen Penguji I

Ir. Eben Oktavianus Zai, S.T., M.sc

Dosen Penguji II

Sorta Ria Nurliana Panjaitan ,S.T.,M.T

kultas Teknik

Tiurma Elita Saragi, S.T., M.T.

Ketua Program Studi

Yetty Riris Ra Saragin, S.T.,M.T., IPU, ACPE.

Tiurma Elita Saragi, S.T.,M.T

BABI

PENDAHULUAN

1.1. Latar Belakang

Debit merupakan jumlah air yang mengalir di dalam saluran atau sungai perunit waktu. Metode yang umum di terapkan dalam menetapkan debit sungai dengan menggunkanan metode profil sungai (*Cross Section*). Pada metode ini debit merupakan hasil perkalian antara luas penampang vertical sungai (profil sungai) dengan kecepatan aliran air. Debit (kecepatan aliran) adalah komponen penting yang berhubungan dengan permasalahan Das seperti erosi, sedimentasi, banjir, dan longsor. Oleh karena itu perhitungan debit harus di lakukan dengan monitoring DAS (Rahayu, 2009).

Debit aliran sungai adalah jumlah volume air yang mengalir melintasi suatu penampang sungai dalam setiap satuan waktu. Dalam sistem satuan Internasional (SI), debit diukur dalam meter kubik per detik (m³/dt). Sungai menerima air dari berbagai sumber di dataran tinggi seperti lereng bukit atau pegunungan tinggi. Di daerah ini, curah hujan intensif menyebabkan air hujan mengalir ke tempat yang lebih rendah, kemudian mengumpul di bagian cekung daratan yang lebih rendah. Seiring berjalannya waktu, volume air yang tidak dapat ditampung oleh cekungan akan mencapai kapasitas maksimum, sehingga air akan mengalir keluar melalui bagian tepi cekungan yang paling rentan tererosi oleh air.

Air mengalir di atas permukaan tanah yang lebih rendah, awalnya merata. Namun, perbedaan tekstur permukaan tanah, misalnya tanah yang tidak begitu keras, membuatnya rentan terkikis. Akibatnya, terbentuk alur-alur yang semakin panjang, terutama ketika aliran air semakin deras dan sering. Alur tersebut dapat berbelok dan bercabang. Jika terdapat rintangan seperti batu besar, sungai juga bisa mengalir di bawah permukaan tanah. Air dari atas akan menemukan celahcelah ke bawah tanah dan mengalir menuju daerah rendah. Seiring berjalannya waktu, sungai akan melebar dan membesar.

Debit banjir adalah tingkat aliran air maksimum dalam sungai atau saluran alami yang telah ditentukan dengan periode ulang rata-rata yang sudah ditentukan.

Dimana debit ini dapat dialirkan tanpa membahayakan proyek irigasi dan stabilitas struktur bangunan bangunannya, terkait penentuan debit banjir rencana,dapat dilakukan dengan menganalisis debit puncaknya, seringkali dilakukan berdasarkan data pengamatan tinggi muka air harian dengan menggunakan periode ulang tahun tertentu, sehingga kita dapat menghitung nilai debit rencana ini. Debit banjir rencana memiliki peran penting dalam perhitungan tinggi air banjir yang direncanakan, mengevaluasi tekanan air, serta menilai stabilitas bendung dan talud bronjong.

Dalam menetukan debit banjir rencana pada penelitian ini digunakan periode ulang 100 tahun dimana debit banjir pada lokasi sungai merujuk pada estimasi debit banjir yang memiliki kemungkinan terjadi sekitar satu kali dalam seratus tahun. Ini adalah angka yang digunakan dalam perencanaan infrastruktur dan tata ruang, terutama di sektor air dan drainase, untuk memastikan bahwa struktur yang dibangun mampu menanggulangi banjir ekstrem dengan risiko minimal. Secara teknis, periode ulang adalah konsep dalam hidrologi yang mengacu pada interval waktu yang diestimasi antara kejadian banjir serupa dengan intensitas yang sama atau lebih besar. Periode ulang 100 tahun menunjukkan bahwa banjir dengan intensitas seperti itu diperkirakan akan terjadi sekali dalam kurun waktu seratus tahun. Penting untuk diingat bahwa periode ulang bukanlah jaminan bahwa banjir sebesar itu hanya akan terjadi tepat setiap seratus tahun. Banjir ekstrem bisa saja terjadi lebih sering atau lebih jarang dari perkiraan ini. Namun, periode ulang 100 tahun memberikan dasar yang umumnya diterima dalam perencanaan dan konstruksi infrastruktur untuk meminimalkan risiko banjir yang parah. Ini juga memungkinkan insinyur dan perencana untuk menyesuaikan desain struktur sesuai dengan risiko yang dapat diterima.

Pembangunan PLTM Parmonangan II, yang terletak di Desa Manalu Dolok, Kecamatan Parmonangan, Tapanuli Utara, Sumatera Utara, dimulai pada tahun 2019 dan selesai pada pertengahan tahun 2021. PLTM Parmonangan II memiliki tujuan utama untuk memberikan manfaat kepada masyarakat, terutama warga Sumatera Utara, dengan fokus pada pemanfaatan energi terbarukan yang ramah lingkungan. Hal ini bertujuan untuk mengurangi penggunaan bahan bakar fosil

yang dapat merusak lingkungan dan berdampak negatif pada kesehatan masyarakat.

Sehubungan dengan beroperasinya PLTM Parmonangan II, dilakukan studi yang berjudul "Analisa Debit Banjir pada Sungai Sibundong (Studi Kasus PLTM Parmonangan II)" dengan tujuan mengidentifikasi dan menilai besarnya debit banjir di lokasi PLTM Parmonangan II. Dengan demikian, penelitian ini berkontribusi pada pemahaman dan manajemen potensi banjir di wilayah tersebut, yang penting untuk keberlanjutan proyek PLTM dan keselamatan lingkungan serta kesehatan masyarakat.

1.2. Rumusan Masalah

Berdasarkan uraian latar belakang masalah di atas, maka dapat diperoleh rumusan malasah sebagai berikut:

- 1. Bagaimana cara menentukan debit banjir rencana periode ulang 100 tahun?
- 2. Bagaimana luasan kondisi Daerah Aliran Sungai PLTM parmonangan II?

1.3. Batasan Masalah

Untuk memastikan fokus dan relevansi penelitian, area penelitian difokuskan pada lokasi PLTM Parmonangan II. Hal ini dilakukan agar analisis yang dilakukan dapat terpusat pada kawasan dan daerah yang menjadi fokus permasalahan dalam lingkup pembahasan.

1.4. Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut :

- 1. Untuk mendapatkan debit banjir rencana pada PLTM Parmonangan II periode ulang 100 tahun.
- 2. Untuk menentukan kondisi dan luasan Daerah Aliran Sungai.

1.5. Manfaat Penelitian

Adapun manfaat dari penelitian ini adalah sebagai berikut:

 Manfaat bagi instansi setempat ialah sebagai pedoman/acuan dalam pengambilan keputusan terkait kontruksi bangunan air PLTM (Pembangkit Listrik Tenaga Mikrohidro). 2. Manfaat untuk Peneliti sendiri ialah sebagai penelitian lanjutan dan pengembangan ilmu pengetahuan khususnya dalam menentukan debit banjir rencana yang dapat digunakan sebagai bahan perbandingan untuk peneliti.

BAB II

TINJAUAN PUSTAKA

2.1. Debit Banjir

Banjir Menurut Suripin (2003) adalah suatu kondisi di mana tidak tertampungnya air dalam saluran pembuang (palung sungai) atau terhambatnya aliran air di dalam saluran pembuang, sehingga meluap menggenangi daerah (dataran banjir) sekitarnya. Banjir menurut Departemen Permukiman dan Prasarana Wilayah (2002) adalah aliran yang relatif tinggi dan tidak tertampung lagi oleh alur sungai atau saluran.

Debit banjir rencana adalah jumlah air maksimum yang direncanakan untuk mengalir melalui sungai atau saluran alamiah dalam periode tertentu tanpa mengancam lingkungan sekitar atau stabilitas sungai. Analisis debit banjir bertujuan untuk menetapkan volume air maksimum yang dapat diatasi oleh suatu Daerah Aliran Sungai (DAS). Dalam perencanaan, debit banjir berperan penting dalam menentukan dimensi bangunan pengalih aliran (diversion) dan bangunan pelimpah (Spillway) selama konstruksi. Idealnya, estimasi debit banjir didasarkan pada data historis banjir. Namun, dalam situasi terbatas, pendekatan berbasis hujan rancangan menjadi penting untuk menentukan curah hujan rencana. Data curah hujan serta karakteristik fisik DAS menjadi elemen kunci dalam perhitungan besarnya debit banjir rencana, baik melalui metode rasional, empiris, maupun statistic.

2.2. Analisa Debit Banjir

Soewarno (1995) berpendapat bahwa menentukan debit banjir rencana bergantung pada tujuan yang ingin dicapai. Debit banjir rencana memiliki macam macam kala ulang yang sesuai dengan perencanaan di suatu lokasi. Dalam pemilihan suatu teknik analisis penentuan banjir rencana tergantung dari data-data yang tersedia dan macam dari bangunan air yang akan dibangun. Perhitungan

debit banjir memerlukan data curah hujan yang diperoleh melalui stasiun-stasiun penakar hujan. Stasiun penakar hujan yang berpengaruh di DAS telah memakai alat otomatik yang menghasilkan data curah hujan. Debit banjir rencana ini dipergunakan untuk perhitungan tinggi air banjir rencana, tekanan air dan menghitung stabilitas bendung dan talud bronjong.

2.2.1. Metode Hidrograf Satuan Sintetik Nakayasu

Hidrograf Satuan Sintetis adalah sebuah teknik yang digunakan untuk memproyeksikan volume air banjir yang mungkin terjadi di Daerah Aliran Sungai (DAS) berdasarkan karakteristik geografis dan hidrologis DAS tersebut. Dalam konteks ini, penelitian ini menggunakan Metode HSS Nakayasu, yang berasal dari Jepang, untuk melakukan estimasi debit banjir (aliran air maksimum) dalam DAS dengan menggunakan persamaan 2.1

$$Q_{p} = \frac{C}{3.6} \left(\frac{A Ro}{0.3 T_{p} + T_{0.3}} \right) \tag{2.1}$$

Dimana:

Qp = Debit puncak banjir (m^3/dt)

C = Koefisien pengaliran

A = Luas DAS (km²)

Ro = Satuan kedalaman hujan (mm)

Tp = Waktu dari permulaan banjir sampai puncak hidrograf (jam)

T0,3 = Waktu dari puncak banjir sampai 0,3 kali debit puncak (jam

Untuk menentukan Tp dan T0,3 digunakan pendekatan rumus persamaan 2.2 s/d 2.4.

Tp =
$$tg + 0.8 tr$$
 (2.2)

$$T0.3 = \alpha tg \tag{2.3}$$

Tr =
$$0.5$$
 tg sampai tg (2.4)

tg (*time lag*) adalah waktu antara hujan sampai debit puncak banjir (jam). tg dihitung dengan ketentuan sebagai berikut :

- Sungai dengan panjang alur L > 15 km : tg = 0.4 + 0.058 L
- Sungai dengan panjang alur L < 15 km : tg = 0.21 L 0.7

Perhitungan T0,3 menggunakan ketentuan:

• $\alpha = 2 \rightarrow$ pada daerah pengaliran biasa.

- $\alpha = 1.5 \rightarrow \text{pada bagian naik hidrograf lambat, dan turun cepat.}$
- $\alpha = 3 \rightarrow$ pada bagian naik hidrograf cepat, dan turun lambat.

Untuk mendapatkan kurva hidrograf satuan sintetisnya digunakan beberapa persamaan berbeda pada kurva tertentu, diantaranya :

Pada waktu kurva naik : $0 \le t \le Tp$, dapat dihitung mengggunakan persamaan 2.5

$$Qa = (t/Tp)^{2,4}$$
 (2.5)

dimana Qa adalah limpasan sebelum mencapai debit puncak (m³/dt). Sedangkan pada waktu kurva turun *(decreasing limb)* menggunakan persamaan 2.6 s/d 2.8 :

• Selang nilai :0 \leq t \leq (Tp + T_{0,3}) :

$$Qd_1 = Qp. 0, 3^{\frac{(t-Tp)}{T_{0,3}}}$$
 (2.6)

• Selang nilai : $(Tp + T0,3) \le t \le (Tp + T0,3 + 1,5 T_{0,3})$:

$$\mathbf{Qd_2} = \mathbf{Qp.\,0,3}^{\frac{(t-Tp+0.5T_{0,3})}{1.5T_{0,3}}} \tag{2.7}$$

• Selang nilai : $t > (Tp + T0.3 + 1.5 T_{0.3})$:

$$\mathbf{Qd_3} = \mathbf{Qp.0, 3}^{\frac{(t-Tp+1,5T_{0,3})}{2T_{0,3}}}$$
 (2.8)

Gambar 2.1 Grafik Hidrograf Satuan Sintetik Nakayasu

(Sumber: M. Afiz Zikriansyah, 2016)

2.3. Curah Hujan Rata Rata

Data hujan yang diperoleh dari alat penakar hujan merupakan hujan yang terjadi hanya pada satu titik saja (*Point Reanfall*). Mengingat hujan sangat bervariasi terhadap tempat (*Space*), maka untuk kawasan yang luas, satu alat penakar hujan belum dapat menggambarkan hujan wilayah tersebut. Dalam hal ini diperlukan hujan kawasan yang diperoleh dari harga rata-rata curah hujan beberapa stasiun penakar hujan yang ada didalam atau disekitar kawasan tersebut. (*Suripin, 2004*). Ada 3 macam cara yang umum dipakai dalam mengitung hujan rata-rata kawasan:

1. Metode Aritmatika

Metode aritmatika merupakan metode yang paling sederhana dalam perhitungan hujan kawasan. Metode ini didasarkan pada asumsi bahwa semua penakar hujan mempunyai pengaruh yang setara. Untuk menghitung curah hujan rata rata digunakan persamaan 2.9.

$$\overline{\mathbf{P}} = \frac{\mathbf{P1} + \mathbf{P2} + \mathbf{P3} + \dots + \mathbf{Pn}}{n} = \sum_{i=1}^{n} \frac{\mathbf{Pi}}{\mathbf{n}}$$
 (2.9)

Dimana:

 \overline{P} = Tinggi curah hujan rata-rata (mm).

P2...Pn = Tinggi curah hujan pada pos penakar 1, 2, ... n. (mm).


n = Banyak pos penakaran curah hujan (mm)

Cara ini cocok untuk kawasan dengan topografi rata atau datar, alat penakar tersebar merata/hampir merata dan harga individual curah hujan tidak terlalu jauh dari harga rata-ratanya.

2. Metode Poligon Thiessen

Metode ini juga dikenal sebagai metode rata-rata tertimbang (weighted mean). Pendekatan ini memperhitungkan proporsi dari area pengaruh stasiun pengukuran hujan untuk memperhitungkan perbedaan jarak. Area pengaruh ini dibentuk dengan menggambar garis-garis tegak lurus terhadap garis yang menghubungkan dua stasiun pengukuran terdekat satu sama lain (Suripin,

2004). (Gambar 2.2) menunjukkan contoh posisi stasiun 1, 2, dan 3 dari skema poligon Thiessen dalam Daerah Aliran Sungai (DAS).

Gambar 2.2 Polygon Thiessen

(Sumber: Rico Sihotang, 2011)

Curah hujan pada suatu daerah dapat dihitung dengan menggunakan persamaan 2.10 dan 2.11 :

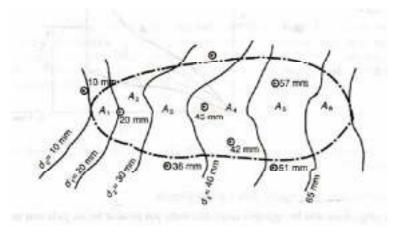
$$\mathbf{P} = \frac{\mathbf{A1.P1 + A2.P2 + \dots + An.Pn}}{\mathbf{A1 + A2 + \dots An}} \tag{2.10}$$

$$\mathbf{P} = \frac{\mathbf{A1.P1 + A2.P2 + \dots + An.Pn}}{\mathbf{A}} \tag{2.11}$$

Dimana:

P = Tinggi curah hujan rata-rata daerah (mm).

Pn = Tinggi curah hujan pada pos penakar hujan (mm).


An= Luas daerah pengaruh pos penakar hujan (km²).

A = Luas total DAS (km²).

3. Metode Garis Isohyet

Isohyet adalah garis yang menghubungkan titik-titik dengan tingkat curah hujan yang serupa. Pendekatan Isohyet menganggap bahwa curah hujan di wilayah antara dua garis Isohyet adalah merata dan setara dengan rata-rata curah hujan dari kedua garis Isohyet tersebut. Metode Isohyet merupakan cara paling teliti untuk menghitung kedalaman hujan rata-rata di suatu daerah, pada metode ini stasiun hujan harus banyak dan tersebar merata, metode

Isohyet membutuhkan pekerjaan dan perhatian yang lebih banyak dibanding dua metode lainnya. (*Triatmodjo*, 2008).

Gambar 2.3 Metode Ishoyet

(Sumber: Rico Sihotang, 2011)

Perhitungan curah hujan pada suatu daerah dapat dihitung dengan menggunakan persamaan 2.12.

$$\mathbf{d} = \frac{\frac{d_0 + d_1}{2} A_1 + \frac{d_1 + d_2}{2} A_2 + \dots + \frac{d_{n-1} + d_n}{2} A_n}{A_1 + A_2 + \dots A_n}$$
(2.12)

Dimana:

A = Luas total DAS (km^2)

d = Tinggi curah hujan rata rata daerah (mm)

 $d_0, d_1, ... d_n$ = Tinggi curah hujan pada pos penakar hujan (mm)

 $A_{1,} A_{2,} A_{3..} A_{n}$ = Luas daerah pengaruh pos penakar hujan (km²)

2.4. Distribusi Probabilitas

Dalam analisis frekuensi data hujan atau debit guna memperoleh nilai hujan rencana atau debit rencana, dikenal beberapa distribusi probabilitas kontinu yang sering digunakan yaitu: Normal, Log Normal, Log Pearson Type III, Gumbel.

2.4.1. Distribusi Normal

Distribusi Normal atau kurva normal disebut pula distribusi Gauss. Untuk analisa frekuensi curah hujan menggunakan metode distribusi Normal,dapat dilakukan dengan menggunakan persamaan 2.13.

$$\mathbf{X}_{T} = \overline{\mathbf{X}} + \mathbf{K}_{T} \cdot \mathbf{S} \tag{2.13}$$

Dimana:

XT = Hujan rencana dengan periode ulang T tahun

$$\overline{X}$$
 = Niai rata-rata dari datai = $\frac{\sum_{1}^{n} Xi}{n}$

KT = Faktor frekuensi, nilainya bergantung dari T (lihat tabel 2.1)

S = Standar Deviasi =
$$\frac{\sum_{i=1}^{n} X_{i}^{2} - \sum_{i=1}^{n} X_{i}}{n-1}$$

2.4.2. Distribusi Log Normal

Untuk analisa frekuensi curah hujan menggunakan metode distribusi Log Normal,dapat di hitung dengan menggunakan persamaan 2.14.

$$LogX_{T} = \overline{LogX} + K_{T}.SLogX$$
 (2.14)

Dimana:

Log XT = Nilailogaritmis hujan rencana dengan periode ulang T tahun.

$$\overline{\text{Log X}}$$
 = Nilai rata-rata dari, $\overline{\text{Log X}} = \frac{\sum_{i=1}^{n} \text{Log X}_{i}}{n}$

S Log X = Standar Deviasi, S Log X =
$$\sqrt{\frac{\sum_{i=1}^{n} (\text{Log } X_i - \overline{\text{Log } X})^2}{n-1}}$$

KT = Faktor frekuensi, nilainya dari T. (lihat tabel 2.1).

Tabel 2.1 Tabel nilai variabel reduksi Gauss

No.	Periode ulang, T (tahun)	Peluang	KT
1	1.001	0.999	-3.05
2	1.005	0.995	-2.58
3	1.01	0.99	-2.33
4	1.05	0.95	-1.64
5	1.11	0.9	-1.28
6	1.25	0.8	-0.84
7	1.33	0.75	-0.67
8	1.43	0.7	-0.52
9	1.67	0.6	-0.25
10	2	0.5	0
11	2.5	0.4	0.25
12	3.33	0.3	0.52
13	4	0.25	0.67
14	5	0.2	0.84
15	10	0.1	1.28
16	20	0.05	1.64
17	50	0.02	2.05
18	100	0.01	2.33
19	200	0.005	2.58
20	500	0.002	2.88
21	1,000.00	0.001	3.09

(Sumber: M. Afiz Zikriansyah, 2016)

2.4.3. Distribusi Log Pearson Type III

Untuk analisa frekuensi curah hujan dengan menggunakan metode Log Person Type III, digunakan rumus yang tertera pada persamaan 2.15.

$$LogX_{T} = \overline{LogX} + K_{T}.SLogX$$
 (2.15)

Dimana:

Log XT = Nilai logaritmis hujan rencana dengan periode ulang T tahun.

$$\overline{\text{Log X}} = \text{Nilai rata-rata dari, } \overline{\text{Log X}} = \frac{\sum_{i=1}^{n} \text{Log X}_{i}}{n}$$

S Log X = Standar Deviasi, S Log X =
$$\sqrt{\frac{\sum_{i=1}^{n} (\text{Log } X_i - \overline{\text{Log } X})^2}{n-1}}$$

K = Variabel standar, besarnya tergantung koefisien kemencengan Cs atau G (lihat tabel 2.2)

$$Cs = \frac{n \sum_{i=1}^{n} (\log X_i - \overline{\log X})^2}{(n-1)(n-2).S_i^3}$$
 (2.16)

Dimana:

Cs = Koefisien kemencengan.

Tabel 2.2 Nilai K untuk distribusi Log person Type III

		I	nterval kejadia	ın (Recurrence	interval), tahur	n (periode ulan	g)	
	1.0101	1.250	2	5	10	25	50	100
Koef, C _s		Per	sentase peluar	g terlampaui (Percent chance	of being excee	rded)	l
	99	80	50	20	10	4	2	1
3.0	-0.667	-0.636	-0.396	0.420	1.180	2.278	3.152	4.051
2.8	-0.714	-0.666	-0.384	0.460	1.210	2.275	3.114	3.973
2.6	-0.769	-0.696	-0.368	0.499	1.238	2.267	3.071	2.889
2.4	-0.832	-0.725	-0.351	0.537	1.262	2.256	3.023	3.800
2.2	-0.905	-0.752	-0.330	0.574	1.284	2.240	2.970	3.705
2.0	-0.990	-0.777	-0.307	0.609	1.302	2.219	2.192	3.605
1.8	-1.087	-0.799	-0.282	0.643	1.318	2.193	2.848	3.499
1.6	-1.197	-0.817	-0.254	0.675	1.329	2.163	2.780	3.388
1.4	-1.318	-0.832	-0.225	0.705	1.337	2.128	2.706	3.271
1.2	-1.449	-0.844	-0.195	0.732	1.340	2.087	2.626	3.149
1.0	-1.588	-0.852	-0.164	0.758	1.340	2.043	2.542	3.022
0.8	-1.733	-0.856	-0.132	0.780	1.336	1.993	2.453	2.891
0.6	-1.880	-0.857	-0.099	0.800	1.328	1.939	2.359	2.755
0.4	-2.029	-0.855	-0.066	0.816	1.317	1.880	2.261	2.615
0.2	-2.178	-0.850	-0.033	0.830	1.301	1.818	2.159	2.472
0.0	-2.326	-0.842	0.000	0.842	1.282	1.751	2.051	2.326
-0.2	-2.472	-0.830	0.033	0.850	1.258	1.680	1.945	2.178
-0.4	-2.615	-0.816	0.066	0.855	1.231	1.606	1.834	2.029
-0.6	-2.755	-0.800	0.099	0.857	1.200	1.528	1.720	1.880
-0.8	-2.891	-0.780	0.132	0.856	1.166	1.448	1.606	1.733
-1.0	-3.022	-0.758	0.164	0.852	1.128	1.366	1.492	1.588
-1.2	-2.149	-0.732	0.195	0.844	1.086	1.282	1.379	1.449
-1.4	-2.271	-0.705	0.225	0.832	1.041	1.198	1.270	1.318
-1.6	-2.388	-0.675	0.254	0.817	0.994	1.116	1.166	1.197
-1.8	-3.499	-0.643	0.282	0.799	0.945	1.035	1.069	1.087
-2.0	-3.605	-0.609	0.307	0.777	0.895	0.959	0.980	0.990
-2.2	-3.705	-0.574	0.330	0.752	0.844	0.888	0.900	0.905
-2.4	-3.800	-0.537	0.351	0.725	0.795	0.823	0.830	0.832
-2.6	-3.889	-0.490	0.368	0.696	0.747	0.764	0.768	0.769
-2.8	-3.973	-0.469	0.384	0.666	0.702	0.712	0.714	0.714
-3.0	-7.051	-0.420	0.396	0.636	0.660	0.666	0.666	0.667

(Sumber: M. Afiz Zikriansyah, 2016)

2.4.4. Distribusi Gumbel

Untuk analisa frekuensi curah hujan menggunakan metode E.J. Gumbel, digunakan rumus seperti yang tertera pada persamaan 2.17.

$$\mathbf{X}_{\mathbf{T}} = \overline{\mathbf{X}} + \mathbf{K}.\mathbf{S} \tag{2.17}$$

Dimana:

X_T= Hujan rencana dengan periode ulang T tahun.

$$\overline{X}$$
 = Nilai rata – rata dari dat, $\overline{X} = \frac{\sum_{1}^{n} X_{i}}{n}$

S = Standar deviasi,
$$S = \sqrt{\frac{\sum_{1}^{n} X_{1}^{2} - \sum_{1}^{n} X_{i}}{n-1}}$$

K = Faktor Probabilitas

Faktor Probabilitas K untuk harga-harga ekstrim Gumbel dapat dinyatakan dalam persamaan 2.18.

$$\mathbf{K} = \frac{\mathbf{Y_T} + \mathbf{Y_n}}{\mathbf{S_n}} \tag{2.18}$$

Dimana:

Y_n = Reduced mean, sebagai fungsi dari banyak data. (lihat tabel 2.3)

 S_n = Reduced standard, deviation sebagai fungsi dari banyak data. (lihat table

2.4) Y_T = Reduced variate, sebagai fungsi dari periode ulang T. (lihat tabel 2.5)

Tabel 2.3 Reduced mean, Yn

N	0	1	2	3	4	5	6	7	8	9
10	0.4952	0.4996	0.5035	0.5070	0.5100	0.5128	0.5157	0.5181	0.5202	0.5220
20	0.5236	0.5252	0.5268	0.5283	0.5296	0.5309	0.5320	0.5332	0.5343	0.5353
30	0.5362	0.5371	0.5380	0.5388	0.8396	0.5403	0.5410	0.5418	0.5424	0.5436
40	0.5436	0.5442	0.5448	0.5453	0.5458	0.5463	0.5468	0.5473	0.5477	0.5481
50	0.5485	0.5489	0.5493	0.5497	0.5501	0.5504	0.5508	0.5511	0.5515	0.5518
60	0.5521	0.5524	0.5527	0.5530	0.5533	0.5535	0.5538	0.5540	0.5543	0.5545
70	0.5548	0.5.550	0.5552	0.5555	0.5557	0.5559	0.5561	0.5563	0.5565	0.5567
80	0.5569	0.5570	0.5572	0.5574	0.5576	0.5578	0.5580	0.5581	0.5583	0.5585
90	0.5586	0.5587	0.5589	0.5591	0.5592	0.5593	0.5595	0.5596	0.5598	0.5599
100	0.5600	0.5602	0.5603	0.5604	0.5606	0.5607	0.5608	0.5609	0.5510	0.5611

(Sumber: M. Afiz Zikriansyah, 2016)

Tabel 2.4 Reduced Standard Deviation, Sn

N	0	4	2	3	4	5	6	7:	8	9
10	0.9496	0.9676	0.9833	0.9971	1.0095	1.0206	1.0316	1.0411	1.0493	1.0565
20	1.0628	1.0696	1.0754	1.0811	1.0864	1.0915	1.0961	1.1004	1.1047	1.1080
30	1.1124	1.1159	1.1193	1.1226	1.1255	1.1285	1.1313	1.1339	1.1363	1.1388
40	1.1413	1.1436	1.1458	1.1480	1.1499	1.1519	1.1538	1.1557	1.1574	1.1590
50	1.1607	1.1623	1.1638	1.1658	1.1667	1.1681	1.1696	1.1708	1.1721	1.1734
60	1.1747	1.1759	1.1770	1.1782	1.1793	1.1803	1.1814	1.1824	1.1834	1.1844
70	1.1854	1.1863	1.1873	1.1881	1.1890	1.1898	1.1906	1.1915	1.1923	1.1930
80	1.1938	1.1945	1.1953	1.1959	1.1967	1.1973	1.1980	1.1987	1.1994	1.2001
90	1,2007	1.2013	1.2020	1.2026	1.2032	1.2038	1.2044	1.2049	1.2055	1.2060
100	1.2065	1.2069	1.2073	1.2077	1.2081	1.2084	1.2087	1.2090	1,2093	1.2096

(Sumber: M. Afiz Zikriansyah, 2016

Tabel 2.5 Reduced variated, YTr sebagai fungsi periode ulang

Periode ulang. Tr (tahun)	YTr
2	0.3668
5	1.5004
10	2.251
20	2.9709
25	3.1993
50	3.9028
75	4.3117
100	4.6012

200	5.2969
250	5.5206
500	6.2149
1000	6.9087
5000	8.5188
10000	9.2121

(Sumber: M. Afiz Zikriansyah, 2016)

2.5. Uji distribusi Probabilitas

Uji distribusi probabilitas dimaksudkan untuk mengetahui apakah persamaan distribusi probabilitas yang dipilih dapat mewakili distribusi statistik sampel data yang dianalisis. Sebagaimana telah diuraikan sebelumnya, bahwa terdapat 2 metode pengujian distribusi probabilitas, yaitu Metode Chi-Kuadrat (X,2) dan Metode Smi rnov-Kolmogorof. (*Suripin.* 2004)

2.5.1. Metode Chi-Kuadrat

Perhitungan uji ditribusi probabilitas dengan menggunakan Metode Uji Chi-Kuadrat, digunakan rumus seperti yang tertera pada persamaan 2.19.

$$\chi^2 = \sum_{i=1}^n \frac{(O_f - E_f)^2}{E_f} \tag{2.19}$$

Dimana:

 χ^2 = Parameter chi-kuadrat terhitung.

E_f = Frekuensi yang diharapkan sesuai dengan pembagian kelasnya.

O_f = Frekuensi yang diamati pada kelas yang sama.

n = Jumlah sub kelompok.

Derajat nyata atau derajat kepercayaan (α) tertentu yang sering diambil adalah 5%. Derajat kebebasan (Dk) dihitung dengan rumus persamaan 2.20 dan 2.21

$$\mathbf{Dk} = \mathbf{K} - (\mathbf{p} + \mathbf{1}) \tag{2.20}$$

$$K = 1 + 3.3 \log n \tag{2.21}$$

Dimana:

Dk = derajat kebebasan.

p = banyaknya parameter, untuk uji chi-kuadrat adalah 2.

K = jumlah kelas distribusi.

n = banyaknya data.

Distribusi probabilitas yang dipakai untuk menentukan curah hujan rencana adalah distribusi probabilitas yang mempunyai simpangan maksimum terkecil dan lebih kecil dari simpangan kritis yang dirumuskan pada persamaan 2.22.

$$\chi 2 < \chi 2 \text{ cr} \tag{2.22}$$

Dimana:

 $\chi 2$ = parameter chi-kuadrat terhitung.

χ2 cr = parameter chi-kuadrat kritis (lihat tabel 2.6)

Tabel 2. 6 Nilai parameter Chi-Kuadrat Kritis, Xcr² (uji satu sisi)

41-			Dera	ıjat Keperca	ıyaan (α)			
dk	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005
1	0.0000393	0.000157	0.000982	0.00393	3.841	5.024	6.635	7.879
2	0.0100	0.0201	0.0506	0.1030	5.9910	7.3780	9.2100	10.5970
3	0.0717	0.115	0.216	0.352	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	11.070	12.832	15.086	16.750
6	0.676	0.872	1.237	1.635	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	22.362	24.736	27.388	29.819
14	4.075	4.660	5.629	6.571	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	24.996	27.448	30.578	32.801
16	5.142	5.812	6.908	7.962	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	27.587	30.191	33.409	35.718
18	6.625	7.015	8.231	9.390	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	30.114	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	36.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	36.415	39.364	42.980	45.558
25	10.520	11.524	13.120	14.611	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	40.113	43.194	46.963	49.645
28	12.461	13.565	15.308	16.928	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	43.733	46.979	50.892	53.672

(Sumber: M. Afiz Zikriansyah, 2016)

Prosedur pengujian distribusi dengan menggunakan metode chi-kuadrat dapat dilakukan dengan tahapan tahapan :

- Urutkan data dari besar ke kecil atau sebaliknya.
- Menghitung jumlah kelas.
- Menghitung derajat kebebasan (Dk) dan χ2 cr
- Menghitung kelas distribusi.
- Menghitung interval kelas.
- Perhitungan nilai $\chi 2$.
- Bandingkan nilai χ2 terhadap χ2 cr.

2.5.2. Metode Smirnov-Kolgomorof

Pengujian distribusi probabilitas dengan Metode Smirnov-Kolmogorof dilakukan dengan langkah-langkah perhitungan sebagai berikut:

- Urutkan data (Xi) dari besar ke kecil atau sebaliknya.
- Tentukan peluang empiris masing-masing data yang sudah diurut tersebut $P(X_i)$ dengan rumus tertentu, rumus Weibull misalnya seperti yang tertera pada persamaan 2.23

$$P(X_i) = \frac{i}{n+1} \tag{2.23}$$

Dimana:

n : jumlah data.

i : nomor urut data (setelah diurut dari besar ke kecil atau sebaliknya).

- Tentukan peluang teoritis masing masing data yang sudah di urut tersebut P'
 (X_i) berdasarkan persamaan distribusi probabilitas yang diplih (Gumbel,
 Normal, dan sebagainya).
- Hitung selisih (ΔP_i) antara peluang empiris dan teoritis untuk setiap data yang sudah diurut dengan menggunakan persamaan 2.24

$$\Delta \mathbf{P_i} = \mathbf{P(X_i)} - \mathbf{P'(X_i)} \tag{2.24}$$

- Tentukan apakah $\Delta P_i < \Delta P$ kritis, jika "tidak" artinya distribusi probabilitas yang dipilih tidak dapat diterima, demikian sebaliknya.
- ΔP kritis (lihat tabel 2.7)

Tabel 2.7 Nilai kritis Do untuk uji Sminorv-Kolmogrov

N		Derajat kepercayaan, α										
IN	0.20	0.10	0.05	0.01								
5	0.45	0.51	0.56	0.67								
10	0.32	0.37	0.41	0.49								
15	0.27	0.30	0.34	0.40								
20	0.23	0.26	0.29	0.36								
25	0.21	0.24	0.27	0.32								
30	0.19	0.22	0.24	0.29								
35	0.18	0.20	0.23	0.27								
40	0.17	0.19	0.21	0.25								
45	0.16	0.18	0.20	0.24								
50	0.15	0.17	0.19	0.23								

(Sumber: M. Afiz Zikriansyah (2016)

2.6. Intensitas hujan rencana

Intensitas hujan adalah jumlah hujan yang dinyatakan dalam tinggi hujan atau volume hujan tiap satuan waktu. (Wesli, 2008). Sifat umum hujan adalah makin singkat hujan berlangsung intensitasnya cenderung makin tinggi dan makin besar periode ulangnya makin tinggi pula intensitasnya.(Suripin, 2004).

Intensitas hujan diperoleh dengan cara melakukan analisis data hujan baik secara statistik maupun secara empiris. Biasanya intensitas hujan dihubungkan dengan durasi hujan jangka pendek misalnya 5 menit, 30 menit, 60 menit dan jamjaman. Data curah hujan jangka pendek ini hanya dapat diperoleh dengan menggunakan alat pencatat hujan otomatis. Apabila data hujan jangka pendek tidak tersedia, yang ada hanya data hujan harian, maka intensitas hujan dapat dihitung dengan rumus Mononobe seperti yang tertera pada persamaan 2.25.

$$I = \frac{R_{24}}{24} \left(\frac{24}{tc}\right)^{2/3} \tag{2.25}$$

Dimana:

I = Intensitas hujan (mm/jam)

R24 = Curah hujan maksimum dalam 24 jam (mm)

Tc = Waktu konsentrasi (jam)

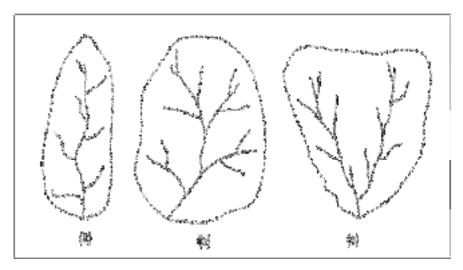
Waktu konsentrasi adalah waktu yang diperlukan untuk mengalirkan air dari titik yang paling jauh pada daerah aliran ke titik kontrol yang ditentukan di bagian hilir suatu saluran.

2.7. Daerah aliran sungai (DAS)

Daerah aliran sungai adalah suatu wilayah daratan yang merupakan suatu kesatuan dengan sungai beserta dengan anak-anak sungainya, dan yang berfungsi untuk menampung, menyimpan serta mengalirkan air yang berasal dari curah hujan ke danau atau kelaut secara alami, yang batas di darat merupakan pemisah topografis dan batas dilaut sampai dengan daerah perairan yang masih terpengaruh aktivitas daratan (Asdakchay), 1995).

Daerah Aliran Sungai (DAS) adalah area daratan yang terbatas oleh punggung-punggung gunung dan berfungsi sebagai penampung air hujan. Air yang terkumpul di DAS ini kemudian dialirkan ke laut melalui sungai utama. DAS juga dikenal sebagai daerah tangkapan air (catchment area) dan merupakan ekosistem dengan dua komponen utama, yaitu sumber daya alam seperti tanah dan vegetasi, serta sumber daya manusia.

DAS atau Sub DAS memiliki keberadaan yang diakui secara formal berdasarkan Peraturan Pemerintah (PERMEN) Nomor 33 tahun 1970 mengenai perencanaan hutan. Dalam konteks ini, DAS merupakan suatu wilayah yang memiliki ciri khas alamiah tertentu yang membuatnya menjadi kesatuan dengan sungai dan anak sungainya yang melintasi wilayah tersebut. DAS juga memiliki fungsi penting, yaitu untuk menampung air hujan, melakukan penyimpanan air, dan mengatur aliran air dari curah hujan. Selain itu, tata kelola DAS didasarkan pada prinsip-prinsip hukum alam yang mengatur keseimbangan ekosistem di sekitarnya. Gambar dibawah ini merupakan contoh bentuk Daerah Aliran Sungai.



Gambar 2.4 Contoh Bentuk DAS

(Sumber: Rico Sihotang, 2011)

Ada 3 (tiga) Bentuk Dari Pola Aliran DAS yaitu:

- Corak Bulu Burung Disebut bulu burung karena bentuk aliran anak sungainya menyerupai ruas-ruas tulang dari bulu burung. Anak-anak sungai langsung mengalir ke sungai utama. Corak seperti ini resiko banjirnya relatif kecil karena air dari anak sungai tiba di sungai utama pada waktu yang berbedabeda.
- Corak Radial Disebut juga menyebar. Anak sungai menyebar dan bertemu di titik-titik tertentu. Wilayahnya berbentuk kipas atau lingkaran. Memiliki resiko banjir yang cukup besar di titik-titik pertemuan anak sungai.
- Corak Pararel Memiliki dua jalur sub daerah aliran sungai yang sejajar dan bergabung di bagian hilir. Memiliki resiko banjir yang cukup besar di titik hilir aliran sungai. Lihat gambar 2.5.

Gambar 2.5 Bentuk Corak Pada Pola Aliran DAS

(sumber: ensiklopedia Indonesia)

BAB III

METODE PENELITIAN

3.1. Metodologi penelitian

Dalam penelitian ini, penulis memanfaatkan metode kuantitatif deskriptif dalam proses analisis data. Metode kuantitatif adalah suatu cara untuk mengolah

data yang bertujuan untuk menggambarkan dan merangkum informasi dari data yang telah terkumpul. Karena alasan ini, penggunaan metode kuantitatif deskriptif dianggap relevan dengan topik atau judul penelitian ini.

3.2. Data penelitian

Data adalah kumpulan informasi, fakta, atau keterangan yang diperoleh dari berbagai sumber dan diorganisir dalam bentuk kata-kata, angka, simbol, atau lainnya. Sumber data merujuk pada asal atau tempat data tersebut diperoleh, terbagi menjadi dua jenis utama: data primer yang diperoleh langsung oleh peneliti dan data sekunder yang diperoleh dari sumber yang telah ada. Sumber data menjadi landasan untuk analisis dan penelitian, dapat berasal dari berbagai subjek, mulai dari sumber hukum hingga informasi dalam bidang tertentu. Dalam penelitian ini menggunakan data sekunder yaitu curah hujan harian maksimum pada periode 10 tahun kebelakang (2013-2022). Data curah hujan maksimum ini di keluarkan oleh Badan Meterologi Klimatologi dan Geofisika (BMKG) stasiun Klimatologi Sampali Medan, sehingga diperoleh data seperti pada tabel (3.1 s/d 3.3). Analisis ini menggunakan data beberapa stasiun pengamatan curah hujan yang berada dalam Daerah Aliran Sungai (DAS) antara lain:

- 1. Stasiun Dolok Sangggul (Humbang Hasundutan) (jarak dari bendungan = \pm 18.5 Km)
- 2. Stasiun Sijamapolang (Humbang Hasundutan) (jarak dari bendungan = \pm 6,6 Km)
- 3. Stasiun Sektor Aek Raja (Tapanuli Utara) (jarak dari bendungan = \pm 9,8 Km)

Tahun	JAN	FEB	MAR	ARP	MEI	JUN	JUL	AGT	SEP	OKT	NOV	DES	MAX/THN
2013	27	42	33	49	16	22	19	24	45	51	51	37	51
2014	37	X	29	39	61	X	X	X	14	17	17	27	61
2015	47	18	19	31	36	27	31	37	X	5	5	32	47
2016	23	45	45	40	35	27	45	45	22	30	30	51	51
2017	60	52	44	48	41	31	X	45	30	23	23	20	60
2018	31	40	48	67	59	41	26	25	40	59	59	55	67

Tabel 3.1 Data curah hujan harian Stasiun Dolok Sanggul

2019	52	52	55	36	52	25	28	21	52	64	64	28	64
2020	38	38	59	52	42	37	28	31	37	26	26	28	59
2021	35	11	55	25	33	28	28	34	28	38	38	34	55
2022	22	34	45	40	40	27	30	22	19	19	27	51	51

(sumber: BMKG, Stasiun klimatologi Sampali Medan)

Lokasi/Stasiun : Dolok Sanggul (Humbang Hasundutan)

Koordinat : 02°16'00'' LU, 098°.46'00.7''BT

Ketinggian Alat : 1414 m

Data Curah Hujan harian : mm

Tabel 3.2 Data curah hujan harian Stasiun Sijamapolang

Tahun	JAN	FEB	MAR	ARP	MEI	JUN	JUL	AGT	SEP	OKT	NOV	DES	MAX/THN
2013	27	42	33	49	16	22	19	24	45	51	51	37	51
2014	37	X	29	39	61	X	X	X	14	17	17	27	61
2015	47	18	19	31	36	27	31	37	X	5	5	32	47
2016	23	45	45	40	35	27	45	45	22	30	30	51	51
2017	60	52	44	48	41	31	X	45	30	23	23	20	60
2018	31	40	48	67	59	41	26	25	40	59	59	55	67
2019	52	52	55	36	52	25	28	21	52	64	64	28	64
2020	38	38	59	52	42	37	28	31	37	26	26	28	59
2021	35	11	55	25	33	28	28	34	28	38	38	34	55
2022	22	34	45	40	40	27	30	22	19	19	27	51	51

(sumber : BMKG, Stasiun klimatologi Sampali Medan)

Lokasi/Stasiun : Sijamapolang (Humbang Hasundutan)

Koordinat : **0**2°10'00.1" LU , 098°42'01.0" BT

Ketinggian Alat : 1200 m

Data Curah Hujan harian : mm

Tabel 3.3 Data curah hujan harian Stasiun Aek Raja

Tahun	JAN	FEB	MAR	ARP	MEI	JUN	JUL	AGT	SEP	OKT	NOV	DES	MAX/THN
2013	28	22	24	29	22	29	8	21	14	22	21	29	29
2014	7	7	X	22	24	10	10	5	5	6	26	28	28
2015	18	20	21	24	27	25	18	16	8	18	X	22	27
2016	17	22	22	19	23	24	20	24	21	20	23	23	24
2017	23	23	19	20	20	14	18	21	21	21	21	25	25

2018	21	22	23	28	22	7	154	32	20	34	188	63	188
2019	42	51	35	27	51	27	90	73	51	41	9	X	90
2020	80	36	83	32	20	30	34	45	R	X	31	43	83
2021	41	41	39	80	63	30	28	39	46	33	44	53	80
2022	65	38	30	45	56	78	44	36	75	38	47	56	78

(sumber : BMKG, Stasiun klimatologi Sampali Medan)

Lokasi/Stasiun : Aek Raja (Tapanuli Utara)

Koordinat : 02° 07'00.8"LU, 098°46 00.2" BT

Ketinggian Alat : 1476 m

Data Curah Hujan harian : mm

Pada penelitian ini, sumber air yang digunakan berasal dari Daerah Aliran Sungai Sibundong. Analisa curah hujan dilakukan menggunakan salah satu metode yang terdiri 3 stasiun curah hujan, yaitu Stasiun Dolok Sanggul (Humbang Hasundutan), dan Stasiun Sijamapolang (Humbang Hasundutan), dan Stasiun Sektor Aek Raja (Tapanuli Utara). Dengan menggambar Polygon Thiessen pada Daerah Aliran Sungai Sibundong, maka akan memperoleh luas tangkapan hujan pada masing-masing stasiun curah hujan. Polygon Thiessen DAS sungai Sibundong didapatkan dari data mentah perusahaan yang sudah di dapat dan diberikan sehingga dapat dilihat pada Gambar 3.1.

Gambar 3.1 Polygon Thiessen DAS parmonangan II (sumber data : Perusahaan PT. Clean Energy)

Luas areal pengaruh masing masing stasiun pada DAS pada Sungai dapat dilihat pada tabel 3.4.

Tabel 3.4 Luas area pengaruh stasiun DAS Parmonangan II

No	Nama Stasiun Penakar Curah Hujan	Luas Areal (km²)
1	Stasiun Dolok Sanggul (Humbang Hasandutan)	121.386
2	Stasiun Sijamapolang (Humbang Hasundutan)	62.471
3	Stasiun Sektor Aek Raja (Tapanuli Utara)	79.344
	263.201	

(Sumber data: Perusahaan PT. Clean Energy)

3.3. Lokasi penelitian

Lokasi penelitian ini berada di pembangkit Listrik Tenaga Minihindro (PLTM) Parmonangan II yang berada disungai sibundong berlokasi di Desa Manalu Dolok, Kecamatan Parmonangan, Tapanuli Utara.

Lokasi penelitian ini adalah di PLTM Parmonangan II. Bendung Pembangkit Listrik Tenaga Minihidro (PLTM) Parmonangan II merupakan PLTM kedua yang selesai pada pertengahan 2021 setelah konstruksi PLTM parmonangan I selesai pada tahun 2017 di Tapanuli Utara dengan Kapasitas 2 X 5 MW yang dimiliki oleh PT. Seluma Energy. Peninjauan lokasi penelitian ini bertujuan untuk menganalisa berapa debit banjir yang di lokasi studi kasus PLTM Parmonangan II.

Gambar 3.1 Lokasi Penelitian

(sumber : Google earth)

Dalam penelitian ini juga memerlukan tiga stasiun pengamatan curah hujan yaitu Stasiun Dolok Sanggul, Stasiun Sijamapolang, dan Stasiun Aek Raja. Berikut peta lokasi stasiun pengamatan curah hujan dilihat pada gambar (3.2 s/d 3.4).

Gambar 3.2 Peta lokasi stasiun pengamatan curah hujan Dolok sanggul (sumber : Google Earth)

Gambar 3.3 Peta lokasi stasiun pengamatan curah hujan Sijamapolang (sumber : Google Earth)

Gambar 3.4 Peta lokasi stasiun pengamatan curah hujan Aek raja (sumber : google Earth)

3.4. Tahapan pelaksanaan penelitian

Dalam peneltian ini, penulis melakukan beberapa tahapan penelitian, tahapan peneltian ini bertujuan untuk memberikan pemahaman yang lebih baik kepada pembaca tentang proses pengerjaan penelitian ini, berikut dibawah ini tahapan tahapan pelaksanaan penelitian ini.

1. Perumusan masalah

Dalam upaya memahami debit banjir rencana , perumusan masalah menjadi langkah awal yang membantu menetapkan arah serta urgensi dari penelitian ini. Melalui proses ini, akan dibahas dan dianalisis secara mendalam tentang Analisa debit banjir rencana periode ulang 100 tahun yang menjadi fokus penelitian, dengan tujuan utama untuk mengidentifikasi dan menganalisa tujuan dari penelitian.

2. Tinjaun Pustaka

Dalam mengembangkan konsep penelitian mengenai analisis debit banjir di PLTM Parmonangan II Sungai Sibundong dengan memanfaatkan metode Hidrograf Satuan Sintetik Nakayasu, peneliti memeriksa dan memahami rumusan-rumusan serta konsep-konsep teoritis dari berbagai sumber literatur.

Hal ini bertujuan untuk memastikan bahwa landasan teoritis penelitian telah terpenuhi.

3. Pengumpulan Data

Pengumpulan data pada penulisan ini, penulis melakukan beberapa langkah pengumpulan data yang meliputi data sekunder. Data sekunder adalah data yang mendukung penelitian serta memberikan gambaran umum tentang hal-hal yang mencakup penelitian. Pengumpulan data sekunder didapatkan melalui instansi-instansi yang terkait dalam permasalahan ini, seperti jurnal, buku literatur, internet dan dokumen lainnya.

4. Pengolahan Data

Setelah semua data yang dibutuhkan diperoleh, langkah selanjutnya adalah pengolahan data. Data-data yang telah di peroleh diolah dengan menggunakan suatu metode tertentu.

5. Analisis Data

Dari hasil pengolahan akan dilakukan analisa data sehingga dapat diperoleh kesimpulan akhir yang berarti. Beberapa analisa tersebut berupa :

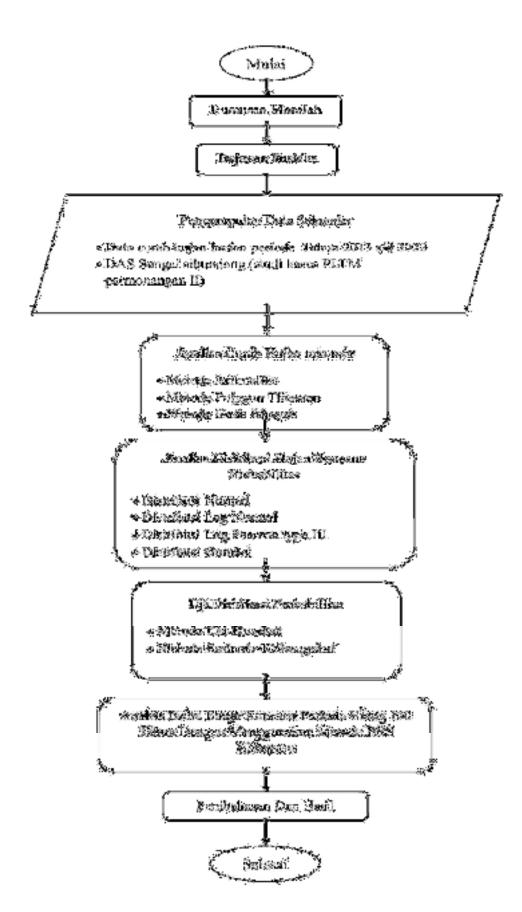
a. Menentukan DAS pada Sungai Sibundong

Hal ini dilakukan untuk menentukan kondisi dan luasan daerah aliran Sungai dengan menggunakan sebuah metode analisis.

b. Analisis curah hujan

Analisis ini berguna untuk mengetahui intensitas curah dalam kala ulang 10 tahun terakhir untuk digunakan sebagai bagian dalam parameter perhitungan Hidrograf yang akan ditentukan.

c. Analisis debit puncak Hidrograf Satuan Sintetik Nakayasu


Analisis ini berguna untuk mengetahui debit puncak dari masing-masing metode Hidrograf Satuan Sintetik Nakayasu di Sungai Sibundong parmonangan.

6. Kesimpulan dan Saran

Penarikan kesimpulan dapat dilakukan setelah hasil pengolahan data diperoleh, ditambah dengan uraian dan informasi yang telah diperoleh.

3.5. Diagram Penelitian

Diagram penelitian ini digunakan untuk memberikan pandangan visual tentang proses pengumpulan data dan analisis yang akan dilakukan dalam Analisa debit banjir pada Sungai sibundong.

Gambar 3.5 Diagram Penelitian